Math, asked by mehekchoudhury, 10 months ago

Check whether 7 + 3x is a factor of 3x~ + 7x.​

Answers

Answered by BrainlyRuby
2

\huge\underline\mathbb\blue{ANSWER}

Let \: p(x) = 3 {x}^{3}  + 7x \\ Divisor \: is \: 7 + 3x \\ So  \: take, \: 7 + 3x = 0 \\  =  > x =  -  \frac{7}{3}

Put  \: \: \:  x =  -  \frac{7}{3}  \:  \:  \: in \:  \: p(x), \: we \: get:

p( -  \frac{7}{3} ) =  3{( -  \frac{7}{3} ) }^{3}  + 7( -  \frac{7}{3} ) \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:   = 3 \times  \frac{ - 343}{27}  -  \frac{49}{3}  \\  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  =   - \frac{ 343}{9}  -  \frac{49}{3}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ - 343 - 147}{9}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ - 490}{9} ≠ 0

Since \: remainder \: is  \: not \: zero, \: so, \: 7 + 3x \: is \: not\: the \: factor \: of \: 3 {x}^{3}  + 7x

Hope it's helpful ✅✅✅

Answered by leela638056
0

Step-by-step explanation:

U are soo Cute...(◔‿◔)

Similar questions