Math, asked by Jay0805, 6 months ago

Check whether A(5, − 1), B(6, 2) and C(7, −3) are the vertices of an isosceles triangle or not

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Points are A(5,-1), B(6,2), C(7,-3)}

\textbf{To find:}

\textsf{whether ABC is a isoceles triagnle or not}

\textbf{Solution:}

\mathsf{AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{AB=\sqrt{(5-6)^2+(-1-2)^2}}

\mathsf{AB=\sqrt{(-1)^2+(-3)^2}}

\mathsf{AB=\sqrt{1+9}}

\implies\boxed{\mathsf{AB=\sqrt{10}}}

\mathsf{BC=\sqrt{(6-7)^2+(2+3)^2}}

\mathsf{BC=\sqrt{1^2+5^2}}

\mathsf{BC=\sqrt{1+25}}

\implies\boxed{\mathsf{BC=\sqrt{26}}}

\mathsf{AC=\sqrt{(5-7)^2+(-1+3)^2}}

\mathsf{AC=\sqrt{(-2)^2+2^2}}

\mathsf{AC=\sqrt{4+4}}

\implies\boxed{\mathsf{AC=\sqrt{8}}}

\textsf{It is clear that, the lengths of no two sides are equal}

\textsf{Hence, ABC is not an isoceles triangle}

Find more:

Prove that the vertices of A(-2,3) B(4,3) C(4,-1) and D(-2,-1) form a Rectangle ​

https://brainly.in/question/36120896

Similar questions