Check whether p(x) is a multiple of g(x) or not by using actual division method. p(x)= 11x - x2 + x3 +69 , g(x)=3+x
Answers
Answered by
0
Answer:
NO
Step-by-step explanation:
Given, p(x)=x 3 −5x 2+4x−3,
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2Now, p(2) should be 0 if p(x) is a multiple of g(x)
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2Now, p(2) should be 0 if p(x) is a multiple of g(x)Thus,
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2Now, p(2) should be 0 if p(x) is a multiple of g(x)Thus,p(2)=2³ −5(2)² +4(2)−3
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2Now, p(2) should be 0 if p(x) is a multiple of g(x)Thus,p(2)=2³ −5(2)² +4(2)−3 =8−20+8−3
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2Now, p(2) should be 0 if p(x) is a multiple of g(x)Thus,p(2)=2³ −5(2)² +4(2)−3 =8−20+8−3 =−7
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2Now, p(2) should be 0 if p(x) is a multiple of g(x)Thus,p(2)=2³ −5(2)² +4(2)−3 =8−20+8−3 =−7 =8−20+8−3
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2Now, p(2) should be 0 if p(x) is a multiple of g(x)Thus,p(2)=2³ −5(2)² +4(2)−3 =8−20+8−3 =−7 =8−20+8−3 = not 0
Given, p(x)=x 3 −5x 2+4x−3, g(x)=x−2=>x−2=0=>x=2Now, p(2) should be 0 if p(x) is a multiple of g(x)Thus,p(2)=2³ −5(2)² +4(2)−3 =8−20+8−3 =−7 =8−20+8−3 = not 0Thus, p(x) is not a multiple of g(x)
YOU MAKE ME BRAINLEST PLEASE...
Similar questions