check whether q(x) is a factor of p(x): p(x)=3x^3+x^2-20x+12, q(x)=3x-2
Answers
Answered by
1
hola amigo!
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
to see that q(x) is the factor of p(x), we have to divide them
if we get zero as remainder it would be it's factor.
so,
q(x)= 3x-2
p(x)= [tex] 3x^{3} [/tex] + [tex] x^{2} [/tex] - 20x + 12
now dividing them we see
+ x - 6
________________________________
3x-2 ) + - 20x + 12
+ - ______________________________
- +
______________________________
- 20x + 12
+ - 2x
__________________________
- +
__________________________
-18 x + 12
-18 x + 12
________________________
+ -
__________________________
0
so given q(x) is factor of p(x).
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
to see that q(x) is the factor of p(x), we have to divide them
if we get zero as remainder it would be it's factor.
so,
q(x)= 3x-2
p(x)= [tex] 3x^{3} [/tex] + [tex] x^{2} [/tex] - 20x + 12
now dividing them we see
+ x - 6
________________________________
3x-2 ) + - 20x + 12
+ - ______________________________
- +
______________________________
- 20x + 12
+ - 2x
__________________________
- +
__________________________
-18 x + 12
-18 x + 12
________________________
+ -
__________________________
0
so given q(x) is factor of p(x).
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Similar questions