Math, asked by aljorajan1339, 1 month ago

Check whether the equation is quadratic (x+1)square =2(x+3)

Answers

Answered by Anonymous
43

  \sf \pink{ Question:-}

 \footnotesize \sf{ Check  \: whether \:  the \:  equation \:  is  \: quadratic \:  (x+1)^{2} \:   = \: 2(x+3)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \sf \pink{ Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \pink \hookrightarrow\footnotesize \sf{ {(x + 1)}^{2}  = 2(x + 3)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \sf \pink{ {(a + b)}^{2}  = {a}^{2}  + 2ab +  { b }^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \pink \hookrightarrow\footnotesize \sf{ {x}^{2} + 2x +  {1}^{2}   = 2x + 6}

\pink \hookrightarrow \footnotesize \sf{ {x}^{2} + 2x +1  = 2x + 6}

 \pink \hookrightarrow\footnotesize \sf{ {x}^{2} + 2x - 2x +1  - 6 = 0}

\pink \hookrightarrow \footnotesize \sf{ {x}^{2}  +  \cancel{ 2x }  - \cancel{2x }+1  - 6 = 0}

 \pink \hookrightarrow\footnotesize \sf{ {x}^{2}  - 5 = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \footnotesize\bigstar\footnotesize  \sf\pink{ \: Quadratic \:  polynomial : A  \: polynomial  \: whose \:  degree \:  is  \: 2 \: }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\bigstar \footnotesize  \sf\pink{ \: This \:  polynomial  \: also  \: has  \: degree \:  2 \:   }

\footnotesize\bigstar \footnotesize  \sf\pink{ \: That's \:  means \:  it  \: is  \: a \:  quadratic \:  polynomial }

Answered by Anglemuskan31
2

Step-by-step explanation:

  \sf \pink{ Question:-}

 \footnotesize \sf{ Check  \: whether \:  the \:  equation \:  is  \: quadratic \:  (x+1)^{2} \:   = \: 2(x+3)}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \sf \pink{ Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \pink \hookrightarrow\footnotesize \sf{ {(x + 1)}^{2}  = 2(x + 3)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \sf \pink{ {(a + b)}^{2}  = {a}^{2}  + 2ab +  { b }^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \pink \hookrightarrow\footnotesize \sf{ {x}^{2} + 2x +  {1}^{2}   = 2x + 6}

\pink \hookrightarrow \footnotesize \sf{ {x}^{2} + 2x +1  = 2x + 6}

 \pink \hookrightarrow\footnotesize \sf{ {x}^{2} + 2x - 2x +1  - 6 = 0}

\pink \hookrightarrow \footnotesize \sf{ {x}^{2}  +  \cancel{ 2x }  - \cancel{2x }+1  - 6 = 0}

 \pink \hookrightarrow\footnotesize \sf{ {x}^{2}  - 5 = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \footnotesize\bigstar\footnotesize  \sf\pink{ \: Quadratic \:  polynomial : A  \: polynomial  \: whose \:  degree \:  is  \: 2 \: }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\bigstar \footnotesize  \sf\pink{ \: This \:  polynomial  \: also  \: has  \: degree \:  2 \:   }

\footnotesize\bigstar \footnotesize  \sf\pink{ \: That's \:  means \:  it  \: is  \: a \:  quadratic \:  polynomial }

muskan Singh ❤️

Similar questions