Math, asked by Anonymous, 2 months ago

Check whether the following function is odd or even or neither
f(x) = log(x +  \sqrt{1 +  {x}^{2} } )

Answers

Answered by BrainlyPopularman
84

GIVEN :

• A function \bf f(x) = \log(x + \sqrt{1 + {x}^{2} } )

TO FIND :

• Type of function odd or even ?

SOLUTION :

 \\ \implies \bf f(x) = \log(x + \sqrt{1 + {x}^{2} } ) \\

• Now replace x → -x ,

 \\ \implies \bf f( - x) = \log  \left( - x + \sqrt{1 + { (- x)}^{2} } \right) \\

 \\ \implies \bf f( - x) = \log  \left( - x + \sqrt{1 + {x}^{2} } \right) \\

• Now add f(x) & f(-x)

 \\ \implies \bf f(x) + f( - x) =\log  \left(x + \sqrt{1 + {x}^{2} } \right) + \log  \left( - x + \sqrt{1 + {x}^{2} } \right) \\

 \\ \implies \bf f(x) + f( - x) =\log  \left[ \left(x + \sqrt{1 + {x}^{2} } \right)  \left( - x + \sqrt{1 + {x}^{2} } \right) \right]\\

 \\ \implies \bf f(x) + f( - x) =\log  \left[ \left(\sqrt{1 + {x}^{2}} + x\right)  \left(\sqrt{1 + {x}^{2} } - x \right)\right]\\

 \\ \implies \bf f(x) + f( - x) =\log  \left[ \left(\sqrt{1 + {x}^{2}}\right)^{2}  -  \left(x\right)^{2} \right]\\

 \\ \implies \bf f(x) + f( - x) =\log(1 + {x}^{2} - x^{2})\\

 \\ \implies \bf f(x) + f(-x) =\log(1)\\

 \\ \implies \bf f(x) + f(-x) =0\\

• We know that –

☆ f(x) + f(-x) = 0 , it mean f(x) is an odd function.

☆ f(x) - f(-x) = 0 , it mean f(x) is an even function.

Hence , Given function f(x) is an odd function.

Similar questions