Math, asked by ashwani19711, 1 month ago

Check whether the following pair of

linear equation has unique solution, no

solution or infinitely many solutions. In

case there is a unique solution find it by

using a cross multiplication method.

x - 3y - 7 = 0

3x - 3y -15 =0

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given pair of lines are

\rm :\longmapsto\:x - 3y - 7 = 0

can be rewritten as

\rm :\longmapsto\:x - 3y = 7

and

\rm :\longmapsto\:3x - 3y = 15

can be rewritten as

\rm :\longmapsto\:x - y = 5

So, pair of linear equations in simplest form is

\rm :\longmapsto\:x - 3y = 7

and

\rm :\longmapsto\:x - y = 5

We know,

The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 have

\rm :\longmapsto\:1)  \:  \: unique  \: solution  \: when \:    \rm \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2}

\rm :\longmapsto\:2)  \:  \: infinite \:  solutions \:  when \: \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}

\rm :\longmapsto\:3)  \:  \: no \:  solution  \: when \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

So, now

Comparing the given two equations with a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0, we get  

a₁ = 1 , b₁ = - 3 , c₁ = 7

a₂ = 1 , b₂ = - 1 , c₂ = 5

So,

\rm :\longmapsto\: \dfrac{a_1}{a_2} = \dfrac{1}{1} = 1

and

\rm :\longmapsto\:\dfrac{b_1}{b_2} = \dfrac{ - 3}{ - 1}  = 3

\bf\implies \:\dfrac{a_1}{a_2} \:  \ne \: \dfrac{b_1}{b_2}

System of equations have unique solution.

Now,

Solution using Cross Multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  - 3 & \sf 7 & \sf 1 & \sf  - 3\\ \\ \sf  - 1 & \sf 5 & \sf 1 & \sf  - 1\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{ - 15 - ( - 7)}  = \dfrac{y}{7 - 5}  = \dfrac{ - 1}{ - 1 - ( - 3)}

\rm :\longmapsto\:\dfrac{x}{ - 15 + 7}  = \dfrac{y}{7 - 5}  = \dfrac{ - 1}{ - 1 + 3}

\rm :\longmapsto\:\dfrac{x}{ - 8}  = \dfrac{y}{2}  = \dfrac{ - 1}{2}

Taking first and third member, we have

\rm :\longmapsto\:\dfrac{x}{ - 8}   = \dfrac{ - 1}{2}

\bf\implies \:x = 4

Taking second and third member, we have

\rm :\longmapsto\: \dfrac{y}{2}  = \dfrac{ - 1}{2}

\bf\implies \:y =  - 1

Similar questions