Math, asked by Aria48, 5 months ago

Check whether the following pair of linear equations are consistent or inconsistent.
6x – 4y + 10 = 0; 3x – 2y = –5​

Answers

Answered by bhumic442
0

Answer:

in consistent

I hope it hepl u

Answered by varadad25
9

Answer:

The given pair of linear equations is consistent.

Step-by-step-explanation:

The given linear equations are

6x - 4y + 10 = 0 and 3x - 2y = - 5.

Now,

6x - 4y + 10 = 0 - - ( 1 )

Comparing with ax + by + c = 0, we get,

  • a₁ = 6
  • b₁ = - 4
  • c₁ = 10

Now,

3x - 2y = - 5

⇒ 3x - 2y + 5 = 0 - - ( 2 )

Comparing with ax + by + c = 0, we get,

  • a₂ = 3
  • b₂ = - 2
  • c₂ = 5

Now,

\displaystyle{\sf\:\dfrac{a_1}{a_2}\:=\:\cancel{\dfrac{6}{3}}}

\displaystyle{\implies\sf\:\dfrac{a_1}{a_2}\:=\:2\:\:\:-\:-\:-\:(\:1\:)}

Now,

\displaystyle{\sf\:\dfrac{b_1}{b_2}\:=\:\dfrac{\cancel{-}\:4}{\cancel{-}\:2}}

\displaystyle{\implies\sf\:\dfrac{b_1}{b_2}\:=\:\cancel{\dfrac{4}{2}}}

\displaystyle{\implies\sf\:\dfrac{b_1}{b_2}\:=\:2\:\:\:-\:-\:-\:(\:2\:)}

Now,

\displaystyle{\sf\:\dfrac{c_1}{c_2}\:=\:\cancel{\dfrac{10}{5}}}

\displaystyle{\implies\sf\:\dfrac{c_1}{c_2}\:=\:2\:\:\:-\:-\:-\:(\:3\:)}

From equations ( 1 ), ( 2 ) & ( 3 ),

\displaystyle{\underline{\boxed{\red{\sf\:\dfrac{a_1}{a_2}\:=\:\dfrac{b_1}{b_2}\:=\:\dfrac{c_1}{c_2}}}}}

∴ The given pair of linear equations is consistent.

Similar questions