Math, asked by nishapillai, 4 months ago

Check whether the points (-6,10), (-4,6) and (3,-8) are collinear

Answers

Answered by eramrahman75
5

Answer:

if the area of triangle formed by the points (x,y) ,(x,y),and (x,y) is zero then the poins are collinear.

Step-by-step explanation:

follw me i will answer any question

Answered by ItzWhiteStorm
136

Question:

\longrightarrow Check whether the points (-6,10),(-4,6) and (3,-8) are collinear.

To Find:

\longrightarrow To check that the points are collinear.

Solution:

We know that,

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bulletThe distance between the points \sf{(x_1,y_1),(x_2,y_2)} is\sqrt{\rm{(x_2 - x_1)^{2}  + (y_2,y_1)}^{2}}

Let A(-6,10),B(-4,6) and C(3,-8) are given points.

Now,AB:

 \:  \:  \:  \:  \:  \:  \implies \sf{AB =  \sqrt{\big( - 4 - ( -6) \big)^{2}  +  \big(6 - 10 \big)^{2}}}

 \:  \:  \:  \:  \:  \:  \:  \implies \sf{AB =  \sqrt{( - 4 - 6)^{2} + (6 - 10)^{2}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf{AB =  \sqrt{(-10)^{2} + (-4)^{2}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf{AB = \sqrt{100  \: +  16}}

 \:  \:  \:  \:  \:  \implies \sf{AB =  \sqrt{116}} \:units

Now,BC:

 \:  \:  \:  \:  \implies \sf{BC =  \sqrt{ \big(3 - ( - 4) \big)^{2}  +  \big( - 8  -  6 \big)^{2}}}

 \:  \:  \:  \:  \implies \sf{ BC = \sqrt{( - 3 + 4)^{2} + ( - 8 - 6)^{2}}}

 \:  \:  \:  \:  \:  \:  \implies \sf{BC =  \sqrt{(1)^{2} +( - 14)^{2}}}

\:  \:  \:  \:  \:  \:  \implies \sf{BC =  \sqrt{1 + 196}}

\:  \:  \:  \:  \:  \:  \implies \sf{BC =   \sqrt{197}} \:units

Now,AC:

 \:  \:  \:  \:  \implies \sf{AC =  \sqrt{\big(3 -( - 6) \big)^{2} + \big( - 8 - 10 \big)^{2}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf{AC =  \sqrt{(3 + 6)^{2}  + ( - 8 - 10)^{2}}}

 \:  \:  \:  \:  \:  \:  \:  \implies \sf{AC =  \sqrt{(9)^{2} + ( - 18)^{2} }}

 \:  \:  \:  \:  \:  \:  \:  \implies \sf{AC =  \sqrt{81 + 324}}

 \:  \:  \:  \:  \:  \implies \sf{ AC = \sqrt{405}} \:units

  • No,The points are not collinear.Because AB+BC is not equal to AC.

______________________________________

More to Know:-

Collinear points: The points which lie on the same line are called collinear points.

Similar questions