check whether the polynomial q(t)=3t3+2t2+t-1 of 3t+1
Answers
Answered by
0
Answer:
Yes
Step-by-step explanation:
Please mark me as brainliest
Answered by
0
Answer:
q(t)=-11/9 ≠0
3t+1 is not a factor of 3t³+2t²+t-1
Step-by-step explanation:
To check the polynomial
q(t)=3t³+2t²+t-1 is a multiple of 3t+1
3t+1 can be a multiple of 3t³+2t²+t-1 if the remainder is zero
3t+1=0
3t=-1
t=-1/3
Substitute the t in the given q(t)
q(t)=3t³+2t²+t-1
q(t)=3(-1/3)³+2(-1/3)²+(-1/3)-1
q(t)=3(-1/27)+2(1/9)+(-1/3)-1
q(t)=(-3/27)+(2/9)+(-1/3)-1
q(t)=-1/9+2/9-1/3-1
q(t)=-1/9+2/9-1/3-1
q(t)=1/9-1/3-1
q(t)=1/9-3/9-1
q(t)=-2/9-1
q(t)=(-2-9)/9
q(t)=-11/9 ≠0
Similar questions