Math, asked by SanchitaSahoo, 1 month ago

Check whether the polynomial q(t) = 4t3 + 4t2 – t - 1 is a multiple of 2t+1.


please tell me the Ans​

Answers

Answered by Sauron
106

Answer:

The polynomial 4t³ + 4t² - t - 1 is a multiple of 2t + 1.

Step-by-step explanation:

Polynomial = 4t³ + 4t² - t - 1

To check = Whether 2t + 1 is a factor of the given polynomial

\sf{\longrightarrow{2t + 1 = 0}}

\sf{\longrightarrow} \: 2t = -1

\sf{\longrightarrow} \:  t = {\dfrac{ - 1}{2}}

By Remainder theorem:

\sf{\longrightarrow} \: q(t) = 4 {t}^{3}  + 4 {t}^{2}  - t - 1

\sf{\longrightarrow} \: q\left( \dfrac{ - 1}{2}\right) = 4 {\left( \dfrac{ - 1}{2}\right)}^{3}  + 4 {\left( \dfrac{ - 1}{2}\right)}^{2}  - \left( \dfrac{ - 1}{2}\right) - 1

\sf{\longrightarrow} \:4 {\left( \dfrac{ - 1}{8}\right)}  + 4 {\left( \dfrac{1}{4}\right)} - \left( \dfrac{ - 1}{2}\right) - 1

\sf{\longrightarrow} \: {\dfrac{ - 1}{2}}  + 1  +   \dfrac{ 1}{2}- 1

\sf{\longrightarrow} \:1 - 1

\sf{\longrightarrow} \:0

The Remainder is 0.

Therefore, the polynomial 4t³ + 4t² - t - 1 is a multiple of 2t + 1.

Answered by Darvince
53

Answer:

4t³ + 4t² – t – 1 is a multiple of 2t + 1.

For explanation kindly refer the attachment.

Attachments:
Similar questions