Math, asked by chance, 1 year ago

check whether the polynomial x-3 is a factor of the polynomial x^3-3x^2-x+3.verify by division algorithm​

Answers

Answered by Anonymous
5

Answer :-

\boxed{\begin{minipage}{6.4 cm}\quad \begin{array}{m{3.5em}cccc}&&\sf x^2& \sf-1&\\\cline{1-6}\multicolumn{2}{l}{\sfx-3\big)}&\sf x^3&\sf-3x^2&\sf-x\sf+3\\&& \sf-(x^3&\sf-3x^2)&&\\\cline{3-4}&&&\sf-x&\sf+3&\\&&&\sf-(-x&\sf+3)&\\\cline{4-5}&&&\sf0&\sf0&\\\end{array}\end{minipage}}

\rule{200}{2}

Or

x - 3 is a factor of polynomial x³ - 3x² - x + 3

So, x = 3

(Putting Values)

(3)³ - 3(3)² - 3 + 3

27 - 27 + 3 - 3

30 - 30

0

 \mathbb{H} \mathfrak{ence \: proved}

 \mathbb{S} \mathfrak{tarOfBrainly}

Similar questions