Math, asked by Anonymous, 1 day ago

Check whether the sum converges or diverges:
 \boxed{\sum_{n = 1}^ \infty \frac{1}{ \sqrt{n} (n + 1) + n \sqrt{n + 1} }}

Answers

Answered by sajan6491
2

 \huge \sf \pink{Converges}

Step by step

 \displaystyle \color{red} \tt\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \left(n + 1\right) + n \sqrt{n + 1}}

Rewrite

 \displaystyle \tt\color{red}{}=\color{red}{\left(\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}} + \sqrt{n} + n \sqrt{n + 1}}\right)}

Can't find the exact value.

By the limit comparison test, the series is convergent.

  \tiny\displaystyle \tt\color{red}{\left(\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}} + \sqrt{n} + n \sqrt{n + 1}}\right)} \approx \color{red}{\left(0.92946543841414\right)}

Hence,

 \tiny \displaystyle \tt \red{\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \left(n + 1\right) + n \sqrt{n + 1}} \approx 0.92946543841414}

Similar questions