Math, asked by hwheheueututgmailcom, 1 month ago

Check whether x =
(-2/3)is one of the
zeros of polynomial
p(x) = 3x⁴ + 2x³-x²/9-x/9+2/27​

Answers

Answered by CuteAnswerer
4

QUESTION :

  • Check whether  \sf {x =\dfrac {-2}{3}} is one of the zeros of the polynomial \sf{3 x^4 + 2x^3 - \dfrac {x^2}{9} -  \dfrac{x}{9}  +  \dfrac{2}{27} .}

REQUIRED KNOWLEDGE :

  • If \bf {x =\dfrac {-2}{3}} is one of the zeros of the given polynomial then putting this value we will get p(x) = 0 ,i.e. \bf {p\big(\dfrac {-2}{3}\big) =0 }.

SOLUTION :

Now,

 \implies \sf{p(x) = 3 x^4 + 2x^3 - \dfrac {x^2}{9} -  \dfrac{x}{9}  +  \dfrac{2}{27}} \\  \\

\implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = 3   \times  {\bigg( \dfrac{ - 2}{3}  \bigg)}^{4} + 2 \times  {\bigg( \dfrac{ - 2}{3}  \bigg)}^{3}  - \dfrac{ {\bigg( \dfrac{ - 2}{3}  \bigg)}^{2} }{9}  -  \dfrac{ \dfrac{ - 2}{3} }{9} +  \dfrac{2}{27}   } \\  \\

 \implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = 3   \times  \dfrac{16}{81}  + 2 \times   \dfrac{ - 8}{27}    - \dfrac{ \dfrac{ 4}{9} }{9}  -  \dfrac{ \dfrac{ - 2}{3} }{9} +  \dfrac{2}{27}   } \\  \\

\implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = 3   \times  \dfrac{16}{81}  + 2 \times   \dfrac{ - 8}{27}    - \dfrac{ 4}{9} \div 9  -   \bigg( \dfrac{ - 2}{3}  \div 9 \bigg) +  \dfrac{2}{27}   } \\  \\

\implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = 3   \times  \dfrac{16}{81}  + 2 \times   \dfrac{ - 8}{27}    - \dfrac{ 4}{9}    \times  \dfrac{1}{9}  -   \bigg( \dfrac{ - 2}{3}  \times  \dfrac{1}{9}  \bigg) +  \dfrac{2}{27}   } \\  \\

\implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = 3   \times  \dfrac{16}{81}  + 2 \times   \dfrac{ - 8}{27}    - \dfrac{ 4}{81}   -   \bigg (\dfrac{ -2}{27} \bigg )  +  \dfrac{2}{27}   } \\  \\

\implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) =  \cancel{3  } \times  \dfrac{16}{ \cancel{81}}  + 2 \times   \dfrac{ - 8}{27}    - \dfrac{ 4}{81}    + \dfrac{ 2}{27}   +  \dfrac{2}{27}   } \\  \\

 \implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = \dfrac{16}{27}  +  \bigg(\dfrac{ - 16}{27}  \bigg)    - \dfrac{ 4}{81}    + \dfrac{ 2}{27} \  +  \dfrac{2}{27}   } \\  \\

\implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = \dfrac{16}{27}   - \dfrac{ 16}{27}     - \dfrac{ 4}{81}    + \dfrac{ 2}{27} \  +  \dfrac{2}{27}   } \\  \\

\implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = \dfrac{48  - 48 - 4  + 6 + 6}{81}    } \\  \\

\implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = \dfrac{48+ 6 + 6- 48 - 4}{81}    } \\  \\

 \implies \sf{p \bigg( \dfrac{ - 2}{3}  \bigg) = \dfrac{60  - 52}{81}    } \\  \\

\implies    \underline{\boxed{\pink{\bf{p \bigg( \dfrac{ - 2}{3}  \bigg) = \dfrac{8}{81} }}}}

\huge{ \pink{\therefore}} \bf {x =\dfrac {-2}{3}} is not one of the zeros of the given polynomial .


Skyllen: Great!
ButterFliee: Nice!
Similar questions