Check whether x²+3x+1 is a factor of 3x⁴+5x³-7x²+2x+2
Answers
for answer plz rever to the image
Answer:
(x²+3x+1) is a factor of (3x⁴+5x³-7x²+2x+2)
Step-by-step explanation:
we have to Check whether (x²+3x+1) is a factor of (3x⁴+5x³-7x²+2x+2)
let us perform a simple, normal division to find if it is a factor:
divisor = (x²+3x+1)
dividend = (3x⁴+5x³-7x²+2x+2)
if we get remainder '0' , then (x²+3x+1) is a factor of (3x⁴+5x³-7x²+2x+2)
x²+3x+1 ) 3x⁴+5x³-7x²+2x+2 ( 3x² - 4x + 2
3x⁴+9x³+3x²
-------------------------
0 - 4x³ - 10x² + 2x + 2
- 4x³ - 12x² - 4x
----------------------------------
0 + 2x² + 6x + 2
+ 2x² + 6x + 2
----------------------
0
here the remainder is '0'.
so , (x²+3x+1) is a factor of (3x⁴+5x³-7x²+2x+2)