Chlorine reacts quickly with hot iron to form iron(III) chloride. Bromine reacts less quickly with hot iron to form iron(III) bromide.
Suggest how fluorine reacts with hot iron and name the compound.
Answers
@brainly.
Reaction of CHLORINE with hot IRON---
It will react explosively with many elements and compounds such as Hydrogen and water. Elemental Fluorine is slightly basic, which means that when it reacts with water it forms
Answer:
Explanation:
his page describes an assortment of reactions of the halogens which don't fit tidily in other pages in this section. All the reactions of the halogens described are redox reactions.
Reactions with hydrogen
This shows the fall in reactivity of the halogens as you go down Group 7.
Fluorine combines explosively with hydrogen even in the cold and dark to give hydrogen fluoride gas.
Chlorine and hydrogen explode if exposed to sunlight or a flame to give hydrogen chloride gas. Alternatively, you can make them combine more peacefully if you light a jet of hydrogen and then lower it into a gas jar of chlorine. The hydrogen continues to burn and hydrogen chloride gas is again formed.
Bromine vapour and hydrogen combine with a mild explosion if you put a flame in. Hydrogen bromide gas is formed.
Iodine and hydrogen only combine partially even on constant heating. An equilibrium is set up between the hydrogen and the iodine and hydrogen iodide gas.
All of these have an equation of the form:
. . . except the iodine case where you would have to replace the arrow by a reversible sign.
Reactions with phosphorus
Warning! You have to be careful in comparing the rates of these reactions because you won't necessarily be comparing like with like. For example, it wouldn't be fair to compare the rate at which phosphorus reacted with gaseous chlorine with the rate it reacted with liquid bromine. There would be much more contact between the particles with the phosphorus and the liquid bromine than between phosphorus and chlorine gas.
The formation of trihalides, PX3
All of the halogens react with phosphorus to give, in the first instance, phosphorus(III) halides - PX3.
There are two common forms of phosphorus which you might come across in the lab - white phosphorus (sometimes called yellow phosphorus) and red phosphorus. The white phosphorus is more reactive than red phosphorus.
To see the reaction between red phosphorus and bromine, you might like to look at this short bit of video on YouTube. You can see that this is a violent reaction in the cold. You would expect white phosphorus to behave even more dramatically.
When you write equations for these reactions, you have to be careful how you write the phosphorus. White phosphorus is molecular, consisting of P4 molecules. Red phosphorus is polymeric, and you just use the symbol P.
So if you were writing the equation for the reaction between white phosphorus and bromine, you would write:
. . . and for red phosphorus: