Choose any values of a and d and write an A.P.
Find the sum of the first 100 terms (S100). (OEQ)
Answers
Answered by
4
Answer:
Step-by-step explanation:
Let's take the following Arithmetic Progression:
a, a+d, a+2d, a+3d, . . . . . . . . .
The nth term = a + (n - 1)d . . . . . . . . . . (i)
100th term = a + (100 - 1)d = a + 99d [using equation (i)]
The sum of the first 100 terms:
S100 = a + a+d + a+2d + . . . . . . . . + (a+97d) + (a+98d) + (a+99d)
S100 = (a+99d) + (a+98d)+ (a+97d) + . . . . . . . . + (a + 2d) + (a + d) + a
Adding the above two equations:
2S100 = (2a+99d)+(2a+99d)+(2a+99d)+ . . . . .+(2a+99d)+(2a+99d)+(2a+99d)
Similar questions