Choose the correct answer if the value of ˆi.(ˆj׈k)+ˆj.(ˆi׈k)+ˆk.(ˆi׈j) is
Answers
Answered by
0
Answer:
Step-by-step explanation:
Attachments:
Answered by
1
ˆi.(ˆj × ˆk) + ˆj.(ˆi × ˆk) + ˆk.(ˆi × ˆj) = 1.
Step-by-step explanation:
We have,
ˆi.(ˆj × ˆk) + ˆj.(ˆi × ˆk) + ˆk.(ˆi × ˆj)
To find, the value of ˆi.(ˆj × ˆk) + ˆj.(ˆi × ˆk) + ˆk.(ˆi × ˆj) = ?
∴ ˆi.(ˆj × ˆk) + ˆj.(ˆi × ˆk) + ˆk.(ˆi × ˆj)
= ˆi.(ˆi ) + ˆj.(- ˆj ) + ˆk.(ˆk)
[ ∵ j × ˆk = ˆi , ˆi × ˆk = - ˆj and ˆi × ˆj = ˆk]
= 1 - 1 + 1
[ ∵ ˆi.ˆi = 1, ˆj.ˆj = 1 and ˆk.ˆk = 1]
= 2 - 1
= 1
Hence, ˆi.(ˆj × ˆk) + ˆj.(ˆi × ˆk) + ˆk.(ˆi × ˆj) = 1.
Similar questions