Math, asked by BrainlyHelper, 1 year ago

choose the correct answer; integral of [10x^9 + 10^xlog_{e^10x}]/(10^x + x^10).dx  (A).(10^x - x^10) + c ( B ). (10^x + x^10) + c      (C). (10^x - x^10)^{-1} + c     (D).   log(10^x + x^10) + c

Answers

Answered by abhi178
5
question is \bf{\int{\frac{10x^9+10^x.log_e^{10}}{10^x+x^{10}}}\,dx}

here, Let f(x) = 10^x + x^10
differentiate with respect to x
f'(x) = 10^x.log10 + 10x^9
hence, it is clear that given integration is like as
\bf{\int{\frac{f'(x)}{f(x)}}\,dx}

but we know, according to rule of integration,
if \bf{\int{\frac{f'(x)}{f(x)}}\,dx} is given
then, integration will be \bf{logf(x)+C}
so, \bf{\int{\frac{10x^9+10^x.log_e^{10}}{10^x+x^{10}}}\,dx=log(10^x+x^{10})+C}

hence, option (D) is correct.
Answered by rohitkumargupta
12
HELLO DEAR,

given :- \bold{\int{\frac{10x^9 + 10^x log_{e^{10x}}}{10^x + x^10)}}.dx}

let t = \bold{10^x + x^10}

\bold{\Rightarrow dt/dx = 10^xlog^{10x} + 10x^9}

\bold\Rightarrow {dx = dt/(10^xlog_{e^{10x}} + 10x^9)}

so, \bold{\int{\frac{10x^9 + 10^xlog_{e^{10x}}}{10^x + x^10)}.dt/(10^xlog_{e^{10x}} + 10x^9)}}

\Rightarrow \bold{int{1/t}\,dt}

\Rightarrow \bold{log|t| + c}

put the value of t in above function.

\huge{\bold{\Rightarrow \log|10^x + x^{10}| + c} }

I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions