Math, asked by riyaingle14, 1 day ago

choose the correct option.​

Attachments:

Answers

Answered by sarkarsayantika62
1

Answer:

(c) is the answer

Step-by-step explanation:

hope it is helpful for you if it's correct pls mark me in bran list

Answered by anindyaadhikari13
5

Solution:

Given that:

 \rm \longrightarrow y = \ln(3x - 2)

Using chain rule of differentiation, differentiating both sides with respect to x, we get:

 \rm \longrightarrow  \dfrac{dy}{dx}=  \dfrac{du}{dx} \times  \dfrac{d}{du} \ln(u) \:  \:  \:  \big( u =3x - 2 \big)

 \rm \longrightarrow  \dfrac{dy}{dx}= \dfrac{d}{dx}(3x - 2) \times  \dfrac{1}{3x - 2}

 \rm \longrightarrow  \dfrac{dy}{dx}= 3 \times  \dfrac{1}{3x - 2}

 \rm \longrightarrow  \dfrac{dy}{dx}= \dfrac{3}{3x - 2}

Therefore, option a is the right answer for the problem.

Answer:

 \rm \hookrightarrow  \dfrac{dy}{dx}= \dfrac{3}{3x - 2}

Learn More:

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}\\ \end{gathered}

Similar questions