Choose the correct option. Justify your choice. (i) 9 sec2A - 9 tan2A = (A) 1 (B) 9 (C) 8 (D) 0 (ii) (1 + tan θ + sec θ) (1 + cot θ - cosec θ) (A) 0 (B) 1 (C) 2 (D) - 1 (iii) (secA + tanA) (1 - sinA) = (A) secA (B) sinA (C) cosecA (D) cosA (iv) 1+tan2A/1+cot2A = (A) sec2A (B) -1 (C) cot2A (D) tan2A
Answers
Answered by
29
SOLUTION
(i) (B) is correct. 9 sec2A - 9 tan2A = 9 (sec2A - tan2A) = 9×1 = 9 (∵ sec2 A - tan2 A = 1) (ii) (C) is correct (1 + tan θ + sec θ) (1 + cot θ - cosec θ) = (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ - 1/sin θ) = (cos θ+sin θ+1)/cos θ × (sin θ+cos θ-1)/sin θ = (cos θ+sin θ)2-12/(cos θ sin θ) = (cos2θ + sin2θ + 2cos θ sin θ -1)/(cos θ sin θ) = (1+ 2cos θ sin θ -1)/(cos θ sin θ) = (2cos θ sin θ)/(cos θ sin θ) = 2 (iii) (D) is correct. (secA + tanA) (1 - sinA) = (1/cos A + sin A/cos A) (1 - sinA) = (1+sin A/cos A) (1 - sinA) = (1 - sin2A)/cos A = cos2A/cos A = cos A (iv) (D) is correct. 1+tan2A/1+cot2A = (1+1/cot2A)/1+cot2A = (cot2A+1/cot2A)×(1/1+cot2A) = 1/cot2A = tan2A
(i) (B) is correct. 9 sec2A - 9 tan2A = 9 (sec2A - tan2A) = 9×1 = 9 (∵ sec2 A - tan2 A = 1) (ii) (C) is correct (1 + tan θ + sec θ) (1 + cot θ - cosec θ) = (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ - 1/sin θ) = (cos θ+sin θ+1)/cos θ × (sin θ+cos θ-1)/sin θ = (cos θ+sin θ)2-12/(cos θ sin θ) = (cos2θ + sin2θ + 2cos θ sin θ -1)/(cos θ sin θ) = (1+ 2cos θ sin θ -1)/(cos θ sin θ) = (2cos θ sin θ)/(cos θ sin θ) = 2 (iii) (D) is correct. (secA + tanA) (1 - sinA) = (1/cos A + sin A/cos A) (1 - sinA) = (1+sin A/cos A) (1 - sinA) = (1 - sin2A)/cos A = cos2A/cos A = cos A (iv) (D) is correct. 1+tan2A/1+cot2A = (1+1/cot2A)/1+cot2A = (cot2A+1/cot2A)×(1/1+cot2A) = 1/cot2A = tan2A
Answered by
12
Answer:
sec 2a_9tan2a= 9 (sec 2 a_tan2a) =9×1=9
Similar questions
English,
7 months ago
Math,
7 months ago
English,
1 year ago
Environmental Sciences,
1 year ago
Business Studies,
1 year ago
English,
1 year ago
English,
1 year ago