Math, asked by ItzImran, 5 hours ago

Choose the correct option with correct explanation:

If \: (x - a) \: cos \:  \theta + y \sin \theta \:  = (x - a) \: cos \:  \phi \:  + y \: sin \:   \phi = a \: and \: tan( \frac{ \theta}{2} ) \:  = 2b \: then \:
(a)  \: {y}^{2}  = 2ax - (1 -  {b}^{2} ) {x}^{2}
(b) \: tan \:  \frac{ \theta}{2}  =  \frac{1}{x} (y +b x)
(c) \:  {y}^{2}  = 2bx - (1 -  {a}^{2} ) {x}^{2}
(d) \: tan \:  \frac{ \phi}{2}  =  \frac{1}{x} (y - bx)
Note:
Wrong answers will be reported!!​

Answers

Answered by binodapal
0

Let,

tan(2θ)=α and tan(2ϕ)=β

So that, α−β=2b

Also, cosθ=1+tan2(2θ)1−tan2(2θ)=1+α21−α2

and sinθ=1+tan2(2θ)2tan(2θ)=1+α22α

similarly, cosϕ=1+β21−β2 and sinϕ=1+β22ϕ

Therefore, we have from the given relation, (x−a)1+α2

Step-by-step explanation:

your answer

Similar questions