Math, asked by wangsgonyai, 2 months ago

chord of a circle is equal to its various find the angles subtended by this chord at centre of circle​

Answers

Answered by OyeeKanak
25

 \huge{ \underline{ \underline{ \sf{Question:- }}}}

  • chord of a circle is equal to its various find the angles subtended by this chord at centre of circle

 \huge{ \underline{ \underline{ \sf{Given :  - }}}}

  • AB is a chord of a circle ,which is equal to the radius of the circle

 \huge{ \underline{ \underline{ \sf{To \:  find :  - }}} }

  • The angles subtended by this chord at centre of circle

 \huge{ \underline{ \underline { \bf{Solution:- }}}}

{ \boxed{ \sf \: O  \: is \:  the \:  centre \:  of  \: the  \: circle.}}

 \:  \:  \:  \:  \:  \:  \:  \:  \pink{  :} \implies  \sf \: AB \:  chord = radius \:  OA

 \:  \:  \:  \:  \:  \:  \red{ : } \implies \:  \sf OA = OB  ( Radii  \: of \:  same \:  circle )

  • Therefore ,

 \sf \: In   \: ∆ \:OAB ,

  • OA = OB = AB

OAB is an equilateral triangle.

 \sf \:  \angle \:A =  \angle \: B =  \angle \: O = 60°

 \boxed{ \underline{ \sf{ \red{Angle  \: subtended \:  by \:  the \:  chord   \: at \:  the  \: center = 60°}}}}

✩。:•.───── ❁❁ ─────.•:。✩

Attachments:
Answered by hotcupid16
140

\bf{\orange{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}}

Given :-

  • Chord = Radius of circle.

To Find :-

  • Angle subtended by chord at centre.

Construction :-

  • Draw 2 radius from each end of chord .

  • Join then to centre.

Now it's given that

\:\:\:\:\:\bold{\underline{\sf{\red{Radius~=~Chord~=~Radius.}}}}

\bf\blue{By~interior~angle~sum~property. } \\

\longmapsto\tt{x+x+x=180°\:}

\longmapsto\tt{3x=180°\:}

\longmapsto\tt{x=60°\:}

\bf{\orange{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}}

Attachments:
Similar questions