Math, asked by ngbavalgave24, 6 months ago

chords AB and CD of a circle intersect in point Q in the interior of a circle if m(arc AD)=25 and m(arc BC)=31 find angle BQC​

Answers

Answered by chevulamaheswari
8

Answer:

Given−

Oisthecentreofacircle.

ItschordsAB&CDintersectatQ.

m(arcAD)=25

o

andm(arcBC)=31

o

.

Tofindout−

∠BQC=?

Solution−

WejoinAD,BC&BD.

AlsowejoinAO,DO&BO,CO.

m(arcAD)=25

o

i.e∠AOD=25

o

.

Similarly

m(arcBC)=31

o

i.e∠BOC=31

o

.

Weknowthattheanglesubtendedbyachord

ofacircleatitscentreistwicetheanglesubtended

bythesamechordatitscurcumference.

∴∠BDC=

2

1

×∠BOC=

2

1

×31

o

=15.5

o

and

∠ABD=

2

1

×∠BDC=

2

1

×25

o

=12.5

o

.

∴InΔBQDwehave

∠BQD=180

o

−(∠ABD+∠BDC)=180

o

−(12.5

o

+15.5

o

)=152

o

.

∠BQC=180

o

−152

o

=28

o

(linearpair).

Ans−OptionD.

solution

Answered By

toppr

159 Views

How satisfied are you with the answer?

This will help us to improve better

answr

Get Instant Solutions, 24x7

No Signup required

girl

Similar questions