Math, asked by smarty3058, 3 months ago

Chords AB and CD of a circle intersect in point Q in the interior of a circle as shown in the figure . If m(arc AD) = 20°, and m(arc BC) = 36°, then find Angle BQC

(3 marks) ​

Answers

Answered by pranav7709664387
0

Answer:

Given−

Oisthecentreofacircle.

ItschordsAB&CDintersectatQ.

m(arcAD)=25

o

andm(arcBC)=31

o

.

Tofindout−

∠BQC=?

Solution−

WejoinAD,BC&BD.

AlsowejoinAO,DO&BO,CO.

m(arcAD)=25

o

i.e∠AOD=25

o

.

Similarly

m(arcBC)=31

o

i.e∠BOC=31

o

.

Weknowthattheanglesubtendedbyachord

ofacircleatitscentreistwicetheanglesubtended

bythesamechordatitscurcumference.

∴∠BDC=

2

1

×∠BOC=

2

1

×31

o

=15.5

o

and

∠ABD=

2

1

×∠BDC=

2

1

×25

o

=12.5

o

.

∴InΔBQDwehave

∠BQD=180

o

−(∠ABD+∠BDC)=180

o

−(12.5

o

+15.5

o

)=152

o

.

∠BQC=180

o

−152

o

=28

o

(linearpair).

Ans−OptionD.

solution

Similar questions