Circle inscribed in a quadrilateral properties
Answers
Answered by
18
Answer:
Quadrilateral circumscribing a circle (also called tangential quadrilateral) is a quadrangle whose sides are tangent to a circle inside it.
Quadrilateral circumscribing a circle (also called tangential quadrilateral) is a quadrangle whose sides are tangent to a circle inside it. Where r = radius of inscribed circle and s = semi-perimeter = (a + b + c + d)/2
Where r = radius of inscribed circle and s = semi-perimeter = (a + b + c + d)/2
Where r = radius of inscribed circle and s = semi-perimeter = (a + b + c + d)/2 Derivation for area
Where r = radius of inscribed circle and s = semi-perimeter = (a + b + c + d)/2 Derivation for areaLet O and r be the center and radius of the inscribed circle, respectively
AAOB=12ar
AAOB=12arABOC=12br
AAOB=12arABOC=12brACOD=12cr
AAOB=12arABOC=12brACOD=12crAAOD=12dr
AAOB=12arABOC=12brACOD=12crAAOD=12dr
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total area
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total areaA=AAOB+ABOC+ACOD+AAOD
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total areaA=AAOB+ABOC+ACOD+AAODA=12ar+12br+12cr+12dr
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total areaA=AAOB+ABOC+ACOD+AAODA=12ar+12br+12cr+12drA=12(a+b+c+d)r
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total areaA=AAOB+ABOC+ACOD+AAODA=12ar+12br+12cr+12drA=12(a+b+c+d)rA=sr (okay!)
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total areaA=AAOB+ABOC+ACOD+AAODA=12ar+12br+12cr+12drA=12(a+b+c+d)rA=sr (okay!)
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total areaA=AAOB+ABOC+ACOD+AAODA=12ar+12br+12cr+12drA=12(a+b+c+d)rA=sr (okay!) Some known properties
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total areaA=AAOB+ABOC+ACOD+AAODA=12ar+12br+12cr+12drA=12(a+b+c+d)rA=sr (okay!) Some known propertiesOpposite sides subtend supplementary angles at the center of inscribed circle. From the figure above, ∠AOB + ∠COD = 180° and ∠AOD + ∠BOC = 180°.
AAOB=12arABOC=12brACOD=12crAAOD=12dr Total areaA=AAOB+ABOC+ACOD+AAODA=12ar+12br+12cr+12drA=12(a+b+c+d)rA=sr (okay!) Some known propertiesOpposite sides subtend supplementary angles at the center of inscribed circle. From the figure above, ∠AOB + ∠COD = 180° and ∠AOD + ∠BOC = 180°.The area can be divided into four kites. See figure below.If the opposite angles are equal (A = C and B = D), it is a rhombus
Similar questions