Math, asked by anandvivek4023, 7 months ago

Circular sheet of paper of radius 20 cm a sector of 30% area is removed and the remaining part is used to make up for a conical surface find the approximate volume of the conical surface in cubic cm and cube root of 51 equal to 7

Answers

Answered by Anonymous
5

Answer:

paper of radius 20

cm, a sector of 30%

area is removed and

the remaining part is

used to

make a

conical surface. Find

the approximate

volume of the

conical surface in

cubic cm ( Assume

V51 = 7)

Step-by-step explanation:

plzzlike

Answered by ushmagaur
0

Answer:

The approximate volume of the conical surface is 2874.6 cm^3.

Step-by-step explanation:

The radius of the circular sheet, r = 20 cm

Area of circular sheet = \pi r^2

                                    = \frac{22}{7}\cdot 20^2

                                    = 1257.14 cm^2 (approx.)

Since a sector of 30% area is removed.

Area removed = 30% of 1257.14

                        = \frac{30}{100}\cdot 1257.14

                        = 377.14 cm^2 (approx.)

Remaining area of circular sheet = 1257.14 - 377.14

                                                        = 880 cm^2

According to the question,

880 cm^2 area of sheet is converted into conical surface.

⇒ 880 cm^2 = curved surface area of cone

⇒ 880 = \pi Rl, where R = radius of cone and l = slant height

Since radius of circular sheet = slant height of cone.

⇒ 880 = \frac{22}{7}\cdot R \cdot20 (Since l = 20 cm)

R=\frac{880 \cdot 7}{22\cdot 20}

R=14 cm

Hence, radius of cone, R = 14 cm

Also,

Height of cone, h = \sqrt{l^2-R^2}

                             = \sqrt{20^2-14^2}

                             = \sqrt{400-196}

                             = \sqrt{204}

                             = 2\sqrt{51}

                             = 14 cm (Given: \sqrt{51}=7)

So, the volume of the cone = \frac{1}{3} \pi R^2h

                                 = \frac{1}{3} \cdot\frac{22}{7} \cdot 14^2 \cdot14

                                 = 2874.6 cm^3 (approx.)

Therefore, the approximate volume is 2874.6 cm^3.

SPJ3

Similar questions