Math, asked by omveeryadav5420, 1 year ago

circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm how many litres of water can it hold​

Answers

Answered by diljitsahota2004
29

volume =πr^2h. circumference =2πr

=22/7*21*21*25 132 =2*22/7*r

=66*3*21*25 132*7/22*1/2=r =103950cm r=21cm

= 103.95leter

Answered by BrainlyRaaz
48

 \bf{\underline{\underline{Answer:}}}

 \bf {34.65\: litres\: of\: water\: it \:can\: hold}

 \bold{\underline {Given:}}

  • Height (h) =25 cm

  • Circumference of the base =132 cm

 \bold{\underline {To\:Find:}}

  • Number of litres of water it can hold =?

 \bf{\underline{\underline{Step\: by\: step \:explanation:}}}

Let  r be the radius of the base and  h be the height of the cylindrical vessel.

As above given,

  • Height (h) = 25 cm

  • Also, circumference of the base = 132 cm.

 \bigstar{\boxed{\bf{Circumference\: of \:circle = 2\pi r}}}

 \therefore\:\:\:\:\:\:\:\tt2\pi r = 132\: cm\\ \\ \tt\implies 2 \times \pi \times r = 132 \:cm \\ \\ \tt\implies r = \dfrac{132}{2 \pi}\:cm\\ \\ \tt\implies r =\dfrac{132}{{2 \times\dfrac{22}{7}}}\:cm\\ \\ \tt\implies r=\dfrac{\cancel {132}^{\:\cancel{66}\:^3}\times7}{\cancel2 \times\cancel {22}} \:cm\\ \\ \tt\implies r = 3\times 7\:cm \\ \\ \tt\implies r = 21\: cm

Now, amount (volume of water = volume of the cylindrical vessel =  \pi r^2h

 \bigstar{\boxed{\bf{\tt Volume\: of\: Cylinder = \pi r^2 h}}}

 =\tt\dfrac{22}{7} × 21 × 21 × 25\: cm^3\\ \\ = \tt22 ×3×21×25 \:cm^3 \\ \\ = \tt34650\: cm^3

Number of litres water can it hold =

 \bigstar{\boxed{\bf{\tt1\:litre = 1000 cm^3}}}

 \therefore\:\:\:= \tt\dfrac{34650}{1000}l\\ \\\:\:\:\:\:\:=\tt\dfrac{34.650}{1 \cancel{000}}l \\ \\ \:\:\:\:\:\:{=\tt34.65\: litres}

Thus, 34.65 litres of water it can hold.


Anonymous: Hello bro
Anonymous: Can you give multiple thanks on my answer ?
Similar questions