Math, asked by sujalsamara, 11 months ago

CITIT
) Find (70^ – 69^) + (68^-67^)+(66^–65^) + ...
+(2²-1²) find maths 11th power series in SEQUENCE AND SERIES​

Answers

Answered by harendrachoubay
3

The sum of the given sequence is "2485".

Step-by-step explanation:

The series are

(70^{2} - 70^{2}), (68^{2} - 67^{2}),

(66^{2} - 65^{2}), ......, (2^{2} - 1^{2}).

= ( 70 + 69) ( 70 - 69) + ( 68+ 67) ( 68 - 67)  + ( 66 + 65) ( 66 - 65) + .....+ ( 2 + 1) ( 2- 1)

= ( 70 + 69) ·1 + ( 68+ 67) ·1 + ( 66 + 65) ·1+ .....+ ( 2 + 1) .1

= ( 70 + 69) + ( 68+ 67) + ( 66 + 65) + .....+ ( 2 + 1)

= 1 + 2 + 3 + .......+ 70

∴ Sum = \frac{70(70 + 1)}{2}  [∵ 1 + 2 + 3 + .......+ n =

\frac{n(n + 1)}{2} ]

= 35 × 71 = 2485

Hence, the sum of the given sequence is "2485".

Similar questions