Math, asked by kollinikitha16, 10 months ago

(Class 10 cbse-maths)
If cosec theta-sin theta =a^3 and sec theta -cos theta = b^3, prove that a^2b^2 (a² +b²)=1

Answers

Answered by MaheswariS
1

\textbf{Given:}

a^3=cosec\theta-sin\theta

a^3=\displaystyle\frac{1}{sin\theta}-sin\theta

a^3=\displaystyle\frac{1-sin^2\theta}{sin\theta}

a^3=\displaystyle\frac{ cos^2\theta}{sin\theta}

a=\displaystyle\frac{ cos^\frac{2}{3}\theta}{sin^\frac{1}{3}\theta}

\text{similarly,}

b^3=sec\theta-cos\theta

\implies\,b=\displaystyle\frac{ sin^\frac{2}{3}\theta}{cos^\frac{1}{3}\theta}

\text{Now,}

a^2b^2(a^2+b^2)

=\displaystyle(\frac{ cos^\frac{4}{3}\theta}{sin^\frac{2}{3}\theta})(\frac{ sin^\frac{4}{3}\theta}{cos^\frac{2}{3}\theta})(\frac{ cos^\frac{4}{3}\theta}{sin^\frac{2}{3}\theta}+\frac{ sin^\frac{4}{3}\theta}{cos^\frac{2}{3}\theta})

=\displaystyle(\frac{ cos^\frac{4}{3}\theta}{sin^\frac{2}{3}\theta})(\frac{ sin^\frac{4}{3}\theta}{cos^\frac{2}{3}\theta})(\frac{ cos^2\theta+sin^2\theta}{sin^\frac{2}{3}\theta\,cos^\frac{2}{3}\theta})

=\displaystyle(\frac{ cos^\frac{4}{3}\theta}{sin^\frac{2}{3}\theta})(\frac{ sin^\frac{4}{3}\theta}{cos^\frac{2}{3}\theta})(\frac{1}{sin^\frac{2}{3}\theta\,cos^\frac{2}{3}\theta})

=\displaystyle\,cos^\frac{4}{3}\theta\,sin^\frac{4}{3}\theta(\frac{1}{sin^\frac{4}{3}\theta\,cos^\frac{4}{3}\theta})

=1

\therefore\boxed{\bf\,a^2b^2(a^2+b^2)=1}

Find more:

X/acosθ+y/bsinθ=1 and x/asinθ-y/bcosθ=1, prove that x²/a²+y²/b²=2.

https://brainly.in/question/15922910

Answered by jaydip1118
0

Answer:

ANSWER IN GIVEN LINK:-

If x= cosecA - sinA and y= secA - cosA, then show that x^2/3 + y^2/3 = ( xy)^-2/3

https://brainly.in/question/16507505?utm_source=android&utm_medium=share&utm_campaign=question

Similar questions