Math, asked by Anonymous, 9 months ago

Class 10
Ch - Arithmetic Progression
\bf{Question-}
Solve the equation:
\sf{-4+(-1)+2+...+x=437}

Answers

Answered by Rohit18Bhadauria
21

\rule{300}{2}

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R:-}}}}

See this attachment

This is the best possible answer

\large{\boxed{\mathbf\pink{\fcolorbox{red}{yellow}{Hope\:you\:have}}}}

\large{\boxed{\mathbf\pink{\fcolorbox{red}{yellow}{Understood}}}}

<marquee>♥️Please mark it as♥️</marquee>

\huge\underline\mathcal\red{Brainliest}

</p><p>\huge{\boxed{\mathbb\green{\fcolorbox{red}{blue}{Thank\:You}}}}

\rule{300}{2}

Attachments:
Answered by Anonymous
72

\huge\underline\mathsf{Answer-}

\huge{\boxed{\red{\sf{x\:=\:50}}}}

\huge\underline\mathsf{Explanation-}

Given equation : -4 + (-1) + 2 ..…. + x = 437

Here, a = -4

d = -1 - (-4)

=> d = 3

\sf{S_n} = 437

We know that,

\large{  \boxed{ \green{ \sf{S_n\:=\:\dfrac{n}{2}[2a + (n - 1)d]}}}}

\implies 437 = \sf{  \dfrac{n}{2} [2(-4) + (n - 1)(3)]}

\implies 437 × 2 = n ( -8 + 3n - 3 )

\implies 874 = -11n + 3n²

\implies 3n² - 11n - 874 = 0

By splitting middle term,

\implies 3n² - 57n + 46n - 874 = 0

\implies 3n ( n - 19 ) + 46 ( n - 19 ) = 0

\implies ( 3n + 46 ) ( n - 19 ) = 0

\implies n = 19 and - \dfrac{46}{3}

Rejecting the negative values since number of terms can't be negative,

\implies n = 19

Now,

x = 2a + ( n - 1 ) d

\implies x = (-4) + ( 19 - 1 ) ( 3 )

\implies x = -4 + 18 × 3

\huge{\boxed{\red{\sf{x\:=\:50}}}}

Similar questions