Math, asked by XxSHURANxX, 3 months ago

• Class - 10 •

If α and β are the zeros of the quadratic polynomial f(x) = kx² + 4x + 4 such that α² + β² = 24, find the values of k.

Answers

Answered by ShírIey
110

Given that, α and β are the zeros of the Quadratic Polynomial f(x) = kx² + 4x + 4. And, (α² + β²) = 24.

As we know that,

Sum and Product of any Quadratic Polynomial are given by :

  • (α + β) = (–b)/a
  • (α β) = c/a

So, Sum and Product of given Quadratic polynomial kx² + 4x + 4 are,

  • Sum of zeroes (α + β) = (–4)/k
  • Product of zeroes (α β) = 4/k

\rule{100px}{.3ex}

⭒By using I D E N T I T Y :

\bigstar\;{\underline{\boxed{\pink{\frak{ \pmb{(a + b)^2 = a^2 + b^2 + 2ab}}}}}}

Therefore,

 \sf :\implies \Big(\alpha + \beta \Big)^2 = \alpha^2 + \beta^2 + 2\alpha \beta \\\\\\:\implies\sf \bigg(\dfrac{-4}{\;k}\bigg)^2 = 24 + 2 \bigg(\dfrac{4}{k}\bigg)  \\\\\\:\implies\sf \bigg(\dfrac{4^2}{k^2} \bigg)= 24 + 2 \bigg(\dfrac{4}{k}\bigg) \\\\\\:\implies\sf \bigg(\dfrac{16}{k^2}\bigg) = 24 + 8k \\\\\\:\implies\sf 16 = 24k^2 + 8k \\\\\\:\implies\sf 2 = 3k^2 + k  \\\\\\:\implies\sf     3k^2 + k -2 = 0 \\\\\\:\implies\sf  3k^2 + 3k - 2k - 2 = 0  \\\\\\:\implies\sf  3k(k + 1) -2(k + 1) = 0 \\\\\\:\implies\sf (3k - 2) (k + 1) = 0 \\\\\\:\implies\underline{\boxed{\frak{\pmb{\pink{k = \dfrac{2}{3} \:or\; -1}}}}}\;\bigstar

\therefore{\underline{\sf{Hence,\; the\;required\:value\;of\;k\;are\; \sf\pmb{ \dfrac{2}{3},\;-1.}}}}

⠀⠀⠀⠀⠀

Answered by Anonymous
77

Answer:

Given :-

If α and β are the zeros of the quadratic polynomial f(x) = kx² + 4x + 4 such that α² + β² = 24,

To Find :-

Value of k

Solution :-

Sum of zeroes

 \pmb { \alpha  +  \beta  =  \dfrac{ - b}{a}}

 \alpha  +  \beta  =  \dfrac{ - 4}{k}

Product of zeroes

 \pmb{  \alpha  \beta  =  \dfrac{c}{a}}

  \sf\alpha  \beta  =  \dfrac{4}{k}

Apply Identity

{ \bigg( \alpha  +  \beta  \bigg)}^{2}  =  { \alpha }^{2}  + 2 \alpha  \beta  +  { \beta }^{2}

 \sf { \bigg(\dfrac{ - 4}{k} } \bigg)^{2}  = 24 + 2 \dfrac{4}{k}

  \sf\dfrac{16}{ {k}^{2} }  = 24 + 8k

 \sf \: 16 = 24 {k}^{2}  + 8k

 \sf \:  \dfrac{16}{8}  = 24k {}^{2}  + k

 \sf \: 2 = 24 {k}^{2}  + k

 \sf \: 3 {k}^{2}  + k - 2 = 0

 \sf \: 3 {k}^{2} +  (3k - 2k) - 2 = 0

 \sf \: (3k - 2) \: or \: (k + 1)

Either

k = 2/3

Or

k = -1

Similar questions