Math, asked by Ashvi075, 2 days ago

Class 10 math question​

Attachments:

Answers

Answered by tennetiraj86
5

Option (d)

Solution :-

Given that

(cos θ - sin θ + 1)/( cos θ + sin θ -1)

It can be written as

=> [cos θ-(sin θ-1)] / [cos θ+(sin θ-1)]

On multiplying both numerator and denominator with [cos θ-(sin θ-1)] then

=>[{cos θ-(sin θ-1)}/{cos θ+(sin θ-1)}]

×[{cos θ-(sin θ-1)} /{cos θ-(sin θ-1)}]

=> [{cos θ-(sin θ-1)}{cos θ-(sin θ-1)}] /

[{cos θ+(sin θ-1)}{cos θ-(sin θ-1)}]

=> [cos θ-(sin θ-1)]² / [(cos θ)²-(sin θ-1)²]

Since, (a+b)(a-b) = -b²

=> [cos θ-(sin θ-1)]² / [cos²θ-(sin θ-1)²]

We know that

(a-b)² = -2ab+

=> [cos² θ-2cos θ(sin θ-1)+sin² θ-2sin θ+1]/[cos²θ-(sin² θ-2sin θ+1)]

=> [cos² θ-2cos θ sin θ+2cos θ+sin² θ

-2sin θ+1] / [cos² θ-sin² θ+2sin θ-1]

=> [1-2 cos θ sin θ+2cos θ-2sin θ+1] / [cos²θ-sin²θ+2 sin θ-1]

Since , sin² A + cos² A = 1

=> [1-2 cos θ sin θ+2 cos θ-2sin θ+1] /[1-sin²θ-sin²θ+2 sin θ-1]

=>(2-2cosθ sinθ+2cosθ-2sinθ)/(-sin²θ-sin²θ+2sinθ)

=>2(1-cosθ sinθ+cosθ-sinθ)/(-2 sin² θ+2 sinθ)

=> 2(1-cosθ sinθ+cos θ- sin θ)/2(- sin² θ +sin θ)

=> (1-cos θ sin θ+cos θ- sin θ)/(- sin² θ

+sin θ)

=>[(1+cos θ)-sinθ(1+cosθ)]/[sinθ(1-sin θ)]

=> [(1+cos θ)(1-sin θ)]/[sin θ(1-sin θ)]

On cancelling (1-sin θ) in both numerator and denominator then

=> (1+cos θ)/(sin θ)

=> (1/sinθ) + (cos θ/sin θ)

=> cosec θ+ cot θ

Therefore,

(cosθ-sinθ+1)/(cosθ+sinθ-1)=cosecθ+cotθ

Used formulae:-

(a+b)(a-b) = a²-b²

(a-b)² = -2ab+

sin²A + cos² A = 1

Answered by krohit68654321
1

Step-by-step explanation:

Option (d)

Solution :-

Given that

(cos θ - sin θ + 1)/( cos θ + sin θ -1)

It can be written as

=> [cos θ-(sin θ-1)] / [cos θ+(sin θ-1)]

On multiplying both numerator and denominator with [cos θ-(sin θ-1)] then

=>[{cos θ-(sin θ-1)}/{cos θ+(sin θ-1)}]

×[{cos θ-(sin θ-1)} /{cos θ-(sin θ-1)}]

=> [{cos θ-(sin θ-1)}{cos θ-(sin θ-1)}] /

[{cos θ+(sin θ-1)}{cos θ-(sin θ-1)}]

=> [cos θ-(sin θ-1)]² / [(cos θ)²-(sin θ-1)²]

Since, (a+b)(a-b) = a²-b²

=> [cos θ-(sin θ-1)]² / [cos²θ-(sin θ-1)²]

We know that

(a-b)² = a²-2ab+b²

=> [cos² θ-2cos θ(sin θ-1)+sin² θ-2sin θ+1]/[cos²θ-(sin² θ-2sin θ+1)]

=> [cos² θ-2cos θ sin θ+2cos θ+sin² θ

-2sin θ+1] / [cos² θ-sin² θ+2sin θ-1]

=> [1-2 cos θ sin θ+2cos θ-2sin θ+1] / [cos²θ-sin²θ+2 sin θ-1]

Since , sin² A + cos² A = 1

=> [1-2 cos θ sin θ+2 cos θ-2sin θ+1] /[1-sin²θ-sin²θ+2 sin θ-1]

=>(2-2cosθ sinθ+2cosθ-2sinθ)/(-sin²θ-sin²θ+2sinθ)

=>2(1-cosθ sinθ+cosθ-sinθ)/(-2 sin² θ+2 sinθ)

=> 2(1-cosθ sinθ+cos θ- sin θ)/2(- sin² θ +sin θ)

=> (1-cos θ sin θ+cos θ- sin θ)/(- sin² θ

+sin θ)

=>[(1+cos θ)-sinθ(1+cosθ)]/[sinθ(1-sin θ)]

=> [(1+cos θ)(1-sin θ)]/[sin θ(1-sin θ)]

On cancelling (1-sin θ) in both numerator and denominator then

=> (1+cos θ)/(sin θ)

=> (1/sinθ) + (cos θ/sin θ)

=> cosec θ+ cot θ

Therefore,

(cosθ-sinθ+1)/(cosθ+sinθ-1)=cosecθ+cotθ

Used formulae:-

→ (a+b)(a-b) = a²-b²

→ (a-b)² = a²-2ab+b²

→ sin²A + cos² A = 1

answer}

Similar questions