Math, asked by Anonymous, 3 months ago

Class 10

Mathematics

Chapter 4 - Quadratic equations

Formulas Needed

Quality Answer Needed​

Answers

Answered by ShírIey
61

⠀⠀⠀⠀⠀★ QUADRATIC EQUATIONS

❍ When we equates any Quadratic Polynomial with zero then, it becomes a Quadratic equation (ax² + bx + c = 0).

\underline{\bf{\dag} \:\mathfrak{Quadratic\; Formula\: :}}⠀⠀⠀⠀

For any Quadratic equation, the roots α and β are given by :

\bf{\dag}\;\;\underline{\boxed{\frak{\Big(\alpha, \;\beta \Big) = \bigg(\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}\bigg)}}}

where,

  • a is coefficient of
  • b is coefficient of x
  • c is constant term
  • α and β are roots

\rule{100px}{.3ex}

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Nature\;of\;Roots\: :}}⠀⠀⠀⠀

  • D (Discriminant) = b² - 4ac

If,

  • D > 0 (roots are unequal and real)
  • D = 0 (roots are real and equal)
  • D < 0 (roots are unequal and Imaginary)

\rule{250px}{.3ex}

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Sum\;\&amp;\; Product\;(\alpha\;and \; \beta)\: :}}⠀⠀⠀⠀

If α and β are roots of any Quadratic equation (ax² + bx + c = 0) then sum and Product is given by :

\underline{\boxed{\frak{Sum = (\alpha + \beta) = \dfrac{-b}{\;a}\;\&amp;\; Product = (\alpha\;\beta)=\dfrac{c}{a}}}}

Also,

⠀⠀⠀⠀⠀

For any cubic equation, the roots (α, β and γ) are given by :

\underline{\boxed{\frak{\alpha + \beta + \gamma = \dfrac{-b}{\;a}, \;\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{c}{a}, \;\alpha \beta \gamma = \dfrac{-d}{\;a}}}}

\rule{250px}{.3ex}

Answered by MrHyper
326

Quadratic equations :

   Quadratic formula

  • \sf{{\underline{\boxed{\bf{ {\dfrac{-b \pm {\sqrt{b^{2}-4ac}} }{2a}} }}}}}

  ◆ Nature of roots

\sf{b^{2}-4ac} is known as Discriminant (D)

  • D > 0 (Two distinct real roots)
  • D = 0 (Roots are real and equal)
  • D < 0 (No real roots)

  ◆ Methods to solve Quadratic

   equations :

  • By splitting the middle term

For eg :-

\sf{~~~~~~~~~~ 2x^{2}+4x+2=0}

\sf\implies{{\boxed{\sf{\pmb{S=4~,~~P=2×2=4~~~~~~(2,2)}}}}}

\sf\implies{(2x^{2}+2x)+(2x+2)=0}

\sf\implies{[2x(x+1)~]+[2(x+1)~]=0}

\sf\implies{(2x+2)(x+1)=0}

\sf\implies{2x+2=0~~~or~~~x+1=0}

\sf\implies{x={\dfrac{-2}{2}}~~~and~~~x=-1}

\sf\implies{{\blue{\underline{\boxed{\bf{x=-1~~~and~~~x=-1}}}}}}

\sf{~~~~~~ \therefore Roots~are:~~-1~,~-1}

  • Using the Quadratic formula (given above)
Similar questions