Math, asked by rajputgitasingh08818, 1 month ago

class 10 maths from trigonometry chapter​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:5 \: cot \theta \:  = 3

\rm :\longmapsto\:cot\theta  = \dfrac{3}{5}

We know,

\rm :\longmapsto\:cot\theta  = \dfrac{adjacent \: side}{opposite \: side}

\rm :\longmapsto\: \dfrac{adjacent \: side}{opposite \: side}  = \dfrac{3}{5}

\rm :\longmapsto\:adjacent \: side \:  =  \: 3k

and

\rm :\longmapsto\:opposite \: side \:  =  \: 5k

We know,

By pythagoras theorem,

\rm :\longmapsto\: {hypotenuse}^{2} =  {opposite \: side}^{2}  +  {adjacent \: side}^{2}

\rm :\longmapsto\: {hypotenuse}^{2} =   {(3k)}^{2} +  {(5k)}^{2}

\rm :\longmapsto\: {hypotenuse}^{2} =   {9k}^{2} +  {25k}^{2}

\rm :\longmapsto\: {hypotenuse}^{2} =     {34k}^{2}

\rm :\longmapsto\: {hypotenuse}^{} = \sqrt{34}  \: {k}

Now,

\rm :\longmapsto\:cos\theta  = \dfrac{adjacent \: side}{hypotenuse}  = \dfrac{3k}{ \sqrt{34} k}  = \dfrac{3}{ \sqrt{34} }

and

\rm :\longmapsto\:sin\theta  = \dfrac{opposite \: side}{hypotenuse}  = \dfrac{5k}{ \sqrt{34} k}  = \dfrac{5}{ \sqrt{34} }

Now, Consider

\rm :\longmapsto\:\dfrac{5sin\theta  - 3cos\theta }{4sin\theta  + 3cos\theta }

On substituting the values, evaluated above

\rm \:  =  \:  \: \dfrac{5 \times \dfrac{5}{ \sqrt{34} }  - 3 \times \dfrac{3}{ \sqrt{34} } }{4 \times \dfrac{5}{ \sqrt{34} }  + 3 \times \dfrac{3}{ \sqrt{34} } }

\rm \:  =  \:  \: \dfrac{\dfrac{25}{ \sqrt{34} }  - \dfrac{9}{ \sqrt{34} } }{\dfrac{20}{ \sqrt{34} }  + \dfrac{9}{ \sqrt{34} } }

\rm \:  =  \:  \: \dfrac{\dfrac{25 - 9}{ \sqrt{34} }  }{\dfrac{20 + 9}{ \sqrt{34} }   }

\rm \:  =  \:  \: \dfrac{\dfrac{16}{ \sqrt{34} }  }{\dfrac{29}{ \sqrt{34} }  }

\rm \:  =  \:  \: \dfrac{16}{29}

Alternative Method :-

Given that,

\rm :\longmapsto\:5 \: cot \theta \:  = 3

\rm :\longmapsto\:cot\theta  = \dfrac{3}{5}

Now, Consider

\rm :\longmapsto\:\dfrac{5sin\theta  - 3cos\theta }{4sin\theta  + 3cos\theta }

\rm \:  =  \:  \: \dfrac{\dfrac{5sin\theta  - 3cos\theta }{sin\theta } }{ \dfrac{4cos\theta  + 3sin\theta}{sin\theta } }

\red{\bigg \{ \because \: \dfrac{cos\theta }{sin\theta }  = cot\theta \bigg \}}

\rm \:  =  \:  \: \dfrac{5 - 3cot\theta }{4 + 3cot\theta }

\rm \:  =  \:  \: \dfrac{5 - 3 \times \dfrac{3}{5}  }{4 + 3 \times \dfrac{3}{5}  }

\rm \:  =  \:  \: \dfrac{25 - 9}{20 + 9}

\rm \:  =  \:  \: \dfrac{16}{29}

Similar questions