Math, asked by interfectrom, 2 months ago

class 10 ncert ch 6 Ex:6.4 Q.No:4,8,9​

Answers

Answered by sudharose315
0

is this the questions you asked

Attachments:
Answered by Anonymous
2

Answer:

Sol-4. If the areas of two similar triangles are equal, prove that they are congruent.

Solution:

Say ΔABC and ΔPQR are two similar triangles and equal in area

Ncert solutions class 10 chapter 6-33

Now let us prove ΔABC ≅ ΔPQR.

Since, ΔABC ~ ΔPQR

∴ Area of (ΔABC)/Area of (ΔPQR) = BC2/QR2

⇒ BC2/QR2 =1 [Since, Area(ΔABC) = (ΔPQR)

⇒ BC2/QR2

⇒ BC = QR

Similarly, we can prove that

AB = PQ and AC = PR

Thus, ΔABC ≅ ΔPQR [SSS criterion of congruence]

8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles ABC and BDE is

(A) 2 : 1

(B) 1 : 2

(C) 4 : 1

(D) 1 : 4

Sol-8.

Given, ΔABC and ΔBDE are two equilateral triangle. D is the midpoint of BC.

Triangles Exercise 6.4 Answer 8

∴ BD = DC = 1/2BC

Let each side of triangle is 2a.

As, ΔABC ~ ΔBDE

∴ Area(ΔABC)/Area(ΔBDE) = AB2/BD2 = (2a)2/(a)2 = 4a2/a2 = 4/1 = 4:1

Hence, the correct answer is (C).

Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio

(A) 2 : 3

(B) 4 : 9

(C) 81 : 16

(D) 16 : 81

Sol-9.

Given, Sides of two similar triangles are in the ratio 4 : 9.

Triangles Exercise 6.4 Answer 9

Let ABC and DEF are two similar triangles, such that,

ΔABC ~ ΔDEF

And AB/DE = AC/DF = BC/EF = 4/9

As, the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides,

∴ Area(ΔABC)/Area(ΔDEF) = AB2/DE2  

∴ Area(ΔABC)/Area(ΔDEF) = (4/9)2 = 16/81 = 16:81

Hence, the correct answer is (D)

Step-by-step explanation:

Plz Plz Plz Mark Me As Brainliest

Similar questions