Math, asked by himanshusaini60, 10 months ago

CLASS 10
SUBJECT: MATHEMATICS
TOPIC LINEAR EQUATIONS IN TWO VARIABLES
1. Solve graphically the system of linear equations: X+3y = 11, 3x+2y=12​

Answers

Answered by BloomingBud
7

\bf{\underline{\underline{\sf{Given:}}}}

Equation 1 \red{\tt{x+3y = 11}}

Equation 2 \blue{\tt{3x+2y=12}}

\star \green{\sf{Solving\:\:the\:\:given\:\:equations\:\:graphically.}}

Now,

Equation 1 \red{\tt{x+3y = 11}}

\boxed{\begin{array}{| c | c | c | c |}\cline{1-4} \bf x & 2 & 5 &8\\ \cline{1-4} \bf y & 3 & 2 &1\\ \cline{1-4} \end{array}}

We get the points. (Taking some value of x and finding y.)

Point = \red{\tt{(2,3)}} ;  \red{\tt{(5,2)}} ;  \red{\tt{(8,1)}}  

\rule{200}2

Equation 2 \blue{\tt{3x+2y=12}}

\boxed{\begin{array}{| c | c | c | c |}\cline{1-4} \bf x & 0 & 1 &2\\ \cline{1-4} \bf y & 6 & 4.5 &3\\ \cline{1-4} \end{array}}

We get the points. (Taking some value of x and finding y.)

Point = \blue{\tt{(0,6)}} ;  \blue{\tt{(1,4.5)}} ;  \blue{\tt{(2,3)}}  

Now,

Plotting the points in the graph.

\star \pink{\underline{\sf{GRAPH\:\:IS\:\:IN\:\:THE\:\:ATTACHED\:\:IMAGE}}}

\rule{200}2

Observation:

  • The equations has intersecting lines.
  • (2,3) is the intersecting point.
  • Number of solution = exactly one solution.
Attachments:
Similar questions