Math, asked by Anonymous, 11 months ago

Class - 10

Trignometry

Explain all trignometric ratios in terms of tan θ.​

Answers

Answered by ShuchiRecites
17

Things seem easier when we take baby steps. Starting with cot∅ ;-)

cot∅ = 1/tan∅

Coming onto sin∅ and cos∅,

→ tan∅ = sin∅/cos∅

→ tan∅ × cos∅ = sin∅

Remember sec∅, I know you forgot. Well, cos∅ = 1/sec∅.

→ sin∅ = tan∅/sec∅

Hoping you remember sec²∅ - tan²∅ = 1, hence sec∅ = √(1 + tan²∅)

sin∅ = tan∅/√(1 + tan²∅)

Wait! Before going cos∅, I won't let you forget cosec∅.

→ cosec∅ = 1/sin∅

cosec∅ = √(1 + tan²∅)/tan∅

Let's now start with cos∅

→ cos∅ = sin∅/tan∅

We know value of sin∅, ryt?

→ cos∅ = tan∅/√(1 + tan²∅)/tan∅

cos∅ = 1/√(1 + tan²∅)

Yes, I won't let you forget sec∅

→ sec∅ = 1/cos∅

sec∅ = √(1 + tan²∅)

Hence answered all :-)

Answered by Anonymous
46

Answer:

\displaystyle{\sin\theta=\sqrt{\dfrac{\tan^2\theta}{1+\tan^2\theta}}}\\\\\\\displaystyle{\cos\theta=\dfrac{1}{\sqrt{1+\tan^2\theta}}}\\\\\\\displaystyle{\cot\theta=\frac{1}{\tan\theta}}

\displaystyle{\sec\theta=\sqrt{1+\tan^2\theta}}

\displaystyle{cosec \ \theta=\dfrac{1}{\sqrt{\dfrac{\tan^2\theta}{1+\tan^2\theta}}}}

Step-by-step explanation:

We have  trigonometric identity :

sin² θ + cos² θ = 1

sec² θ - tan² θ = 1

Starting from sec θ :

We have :

sec² θ - tan² θ = 1

sec² θ = 1 + tan² θ

sec θ = √ (  1 + tan² θ )

We know cos θ = 1 / sec θ

\displaystyle{\cos\theta=\dfrac{1}{\sqrt{1+\tan^2\theta}}}

Now for sin θ :

We have :

\displaystyle{\cos\theta=\dfrac{1}{\sqrt{1+\tan^2\theta}}}

Square on both side :

\displaystyle{\cos^2\theta=\dfrac{1}{1+\tan^2\theta}}

From identity we have :

cos² θ = 1 - sin² θ

\displaystyle{1-\sin^2\theta=\dfrac{1}{1+\tan^2\theta}}\\\\\\\displaystyle{\sin^2\theta=\dfrac{1+\tan^2\theta-1}{1+\tan^2\theta}}\\\\\\\displaystyle{\sin^2\theta=\dfrac{\tan^2\theta}{1+\tan^2\theta}}\\\\\\\displaystyle{\sin\theta=\sqrt{\dfrac{\tan^2\theta}{1+\tan^2\theta}}}

Now for cosec θ we know :

cosec θ = 1 / sin θ

\displaystyle{cosec \ \theta=\dfrac{1}{\sqrt{\dfrac{\tan^2\theta}{1+\tan^2\theta}}}}

Now for cot θ we know :

\displaystyle{\cot\theta=\frac{1}{\tan\theta}}

Hence we get all answer.

Similar questions