Math, asked by skh2, 1 year ago

CLASS 10
TRIGONOMETRY (HOTS)

NO SPAMMING
CONTENT QUALITY

Attachments:

Answers

Answered by Swaroop1234
1
In the give figure,
AD=4cm
BD=3cm
CB=12cm
Angle C=theta
AB^2=AD^2+BD^2
=4^2+3^2
=16+9
=25
AB=
 \sqrt{25}
AB=5cm
So, cot theta=AB/CB
=5/12
Answered by tavilefty666
5

\mathfrak{Answer\: 1}

Given, AD= 4 cm

BD= 3cm

CB= 12cm

\angle ADB=90°

angle ABC= 90°

To find, cot\theta

So, first let's find the value of AB.

We know that \angle ADB is a right angle.

So, AB can be found by Pythagoras theorem.

By Pythagoras theorem

AB^2=AD^2+BD^2\\ AB^2=(4)^2+(3)^2\\ AB^2=16+9\\ AB^2=25\\ AB=\sqrt25\\ \therefore AB=5 cm\\

Now, AC can be also find similarly by Pythagoras theorem.

Because, \angle ABC= 90°

, AC^2=AB^2+BC^2\\ AC^2=(5)^2+(12)^2\\ AC^2=25+144\\ AC^2=169\\ \therefore AC=13 cm\\.

We know,

cot\theta=\frac{adjescent}{opposite}\\ \\  =\frac{12}{5}\\ \\ \\

\mathfrak{Answer\: 2}

Given,\:tan\theta=\frac{4}{3}\\ \\ But\ we\ know, tan\theta=\frac{opposite}{adjescent}\\

If \theta is the angle, then,

opposite=AB=5 cm

adjescent=BC=12 cm

hypotenuse=AC=13 cm

But we know, sin\theta=\frac{opposite}{hypotenuse}\\ \\ cos\theta=\frac{adjescent}{hypotenuse}\\ \\

To find,

\frac{sin\theta+cos\theta}{sin\theta-cos\theta}\\ \\Putting values of sin\theta and cos\theta\\ \\

Similar questions