Math, asked by anshubeenu395, 23 hours ago

CLASS 10
TRIGONOMETRY


PLS ANSWER THIS QUESTION
by hand written ​

Attachments:

Answers

Answered by scvn0135sv
1

Answer:

I attached a picture for step by step explanation

Attachments:
Answered by vikkiain
0

start \:\:solving \:\:from \:\:the\:\: left

Step-by-step explanation:

LHS= \frac{sin \theta + cos \theta}{sin \theta - cos \theta}  +  \frac{sin \theta - cos \theta}{sin \theta + cos \theta}  \\  =  \frac{(sin \theta + cos \theta) ^{2}  + (sin \theta  -  cos \theta)^{2} }{(sin \theta  -  cos \theta) (sin \theta + cos \theta)}  \\  =  \frac{sin^{2}  \theta +   cos^{2} \theta + 2.sin \theta.cos \theta + sin^{2}  \theta  +  cos^{2}\theta -2.sin \theta.cos \theta  }{sin^{2}  \theta  -  cos^{2}  \theta}  \\  =  \frac{1 + 1}{sin^{2}  \theta  -  cos^{2}  \theta}  \\  = \frac{2}{sin^{2}  \theta  -  cos^{2}  \theta} \\  =  \frac{ \frac{2}{cos^{2}  \theta} }{ \frac{sin^{2}  \theta  -  cos^{2}  \theta}{cos ^{2} \theta } }  \\  =  \frac{2sec^{2} }{ \frac{sin^{2} \theta }{cos^{2}  \theta} -  \frac{cos^{2}  \theta}{cos^{2}  \theta}  }  \\  =  \frac{2sec^{2}  \theta}{tan^{2}  \theta - 1}  = RHS

Similar questions