Math, asked by ashmitsingh718p6ehon, 1 year ago

Class 10 Trigonometry pls fast i m in trouble......

Attachments:

Answers

Answered by Anonymous
8

Answer:-

45°

Explanation:-

Given

 tanA= \dfrac{1}{2}

 tanB = \dfrac{1}{3}

 tan(A+B) = \dfrac{tanA + tanB}{1-tanA \: tanB}

To Find

A+B

Solution

we have

 tanA= \dfrac{1}{2}

 tanB = \dfrac{1}{3}

On putting the values

 tan(A+B) = \dfrac{\dfrac{1}{2} +\dfrac{1}{3} }{1-(\dfrac{1}{2})\:( \dfrac{1}{3})}

 tan(A+B) = \dfrac{\dfrac{3+2}{6} }{1-\dfrac{1}{6}}

 tan(A+B) = \dfrac{\dfrac{5}{6} }{\dfrac{6-1}{6}}

 tan(A+B) = \dfrac{\dfrac{5}{6} }{\dfrac{5}{6}}

 tan(A+B) = \dfrac{\cancel{\dfrac{5}{6} }}{\cancel{\dfrac{5}{6}}}

 tan(A+B) = 1

\therefore A+B = 45 \degree

Answered by BrainlyWriter
6

\huge\sf\underline{♡Answers♡}

45°

Explanation—

Given that

 tanA= \dfrac{1}{2}

 tanB = \dfrac{1}{3}

 tan(A+B) = \dfrac{tanA + tanB}{1-tanA \: tanB}

To Find—

A+B =?

--------------------------------------------------

HERE UR EASY AND CATCHY SOLUTIONS—

we have

 tanA= \dfrac{1}{2}

 tanB = \dfrac{1}{3}

By substituting the values

 tan(A+B) = \dfrac{\dfrac{1}{2} +\dfrac{1}{3} }{1-(\dfrac{1}{2})\:( \dfrac{1}{3})}

 tan(A+B) = \dfrac{\dfrac{3+2}{6} }{1-\dfrac{1}{6}}

 tan(A+B) = \dfrac{\dfrac{5}{6} }{\dfrac{6-1}{6}}

 tan(A+B) = \dfrac{\dfrac{5}{6}}{\dfrac{5}{6}}

tan(A+B) = 1

Hence, A+B = 45°

Similar questions