Math, asked by Harshik0, 5 months ago

Class 10th , maths , exercise 6.2 question 1. In fig. 6.17 (i) and (ii), DE || BC. Find EC in (i) and AD in (ii)

Answers

Answered by Uriyella
23

Given :

  • DE || BC.

In (i),

  • AD = 1.5 cm.
  • AE = 1 cm.
  • BD = 3 cm.

In (ii),

  • AE = 1.8 cm.
  • EC = 5.4 cm.
  • BD = 7.2 cm.

To Find :

The measure of EC in (i).

The measure of AD in (ii).

Solution :

(i) In ∆ABC,

DE || BC ---------[Given]

By using BPT (Basic proportionality theorem).

  \:  \: \bf \therefore \:  \:  \dfrac{AD}{DB}  =  \dfrac{AE}{EC}

Where,

  • AD = 1.5 cm.
  • AE = 1 cm.
  • DB = 3 cm.

\bf \implies \dfrac{1.5 \: \not cm}{3 \not cm}  =  \dfrac{1 \: cm}{EC}  \\  \\  \\ \bf \implies EC =  \dfrac{3}{1.5}  \: cm \\  \\  \\ \bf \implies EC = \not 3 \times \dfrac{10}{ \not15} \: cm  \\  \\  \\ \bf \implies EC =  \dfrac{10}{5} \: cm  \\  \\  \\ \bf \implies EC = 2 \: cm

Hence,

The measure of EC is 2 cm.

________________________

(ii) In ∆ABC,

DE || BC ---------[Given]

By using BPT (Basic proportionality theorem).

 \:  \:  \bf \therefore \:  \:  \dfrac{AD}{DB} =  \dfrac{AE}{EC}

Where,

  • AE = 1.8 cm.
  • DB = 7.2 cm.
  • EC = 5.4 cm.

\bf\implies\dfrac{AD}{7.2\:cm}=\dfrac{1.8\: \not cm}{5.4\:\not cm}\\\\\\\bf\implies AD=\dfrac{1.8}{5.4}\times7.2\: cm \\\\\\\bf\implies AD=\dfrac{18}{10}\times\dfrac{\not10}{54}\times\dfrac{72}{\not10}\:cm\\\\\\\bf\implies AD=\dfrac{18}{10}\times\dfrac{\not72}{\not54}\:cm\\\\\\\bf\implies AD=\dfrac{18}{10}\times\dfrac{\not36}{\not27}\: cm\\\\\\\bf\implies AD=\dfrac{\not18}{10}\times\dfrac{4}{\not3}\: cm\\\\\\\bf\implies AD=\dfrac{6\times4}{10\times1}\: cm\\\\\\\bf \implies AD=\dfrac{24}{10}\: cm

\\\\\bf\implies AD=2.4\: cm

Hence,

The measure of AD is 2.4 cm.

Attachments:
Answered by silent9
3

Given :

DE || BC.

In (i),

AD = 1.5 cm.

AE = 1 cm.

BD = 3 cm.

In (ii),

AE = 1.8 cm.

EC = 5.4 cm.

BD = 7.2 cm.

To Find :

The measure of EC in (i).

The measure of AD in (ii).

Solution :

(i) In ∆ABC,

DE || BC ---------[Given]

By using BPT (Basic proportionality theorem).

  \:  \: \bf \therefore \:  \:  \dfrac{AD}{DB}  =  \dfrac{AE}{EC}

Where,

AD = 1.5 cm.

AE = 1 cm.

DB = 3 cm.

\bf \implies \dfrac{1.5 \: \not cm}{3 \not cm}  =  \dfrac{1 \: cm}{EC}  \\  \\  \\ \bf \implies EC =  \dfrac{3}{1.5}  \: cm \\  \\  \\ \bf \implies EC = \not 3 \times \dfrac{10}{ \not15} \: cm  \\  \\  \\ \bf \implies EC =  \dfrac{10}{5} \: cm  \\  \\  \\ \bf \implies EC = 2 \: cm

Hence,

The measure of EC is 2 cm.

________________________

(ii) In ∆ABC,

DE || BC ---------[Given]

By using BPT (Basic proportionality theorem).

 \:  \:  \bf \therefore \:  \:  \dfrac{AD}{DB} =  \dfrac{AE}{EC}

Where,

AE = 1.8 cm.

DB = 7.2 cm.

EC = 5.4 cm.

\bf\implies\dfrac{AD}{7.2\:cm}=\dfrac{1.8\: \not cm}{5.4\:\not cm}\\\\\\\bf\implies AD=\dfrac{1.8}{5.4}\times7.2\: cm \\\\\\\bf\implies AD=\dfrac{18}{10}\times\dfrac{\not10}{54}\times\dfrac{72}{\not10}\:cm\\\\\\\bf\implies AD=\dfrac{18}{10}\times\dfrac{\not72}{\not54}\:cm\\\\\\\bf\implies AD=\dfrac{18}{10}\times\dfrac{\not36}{\not27}\: cm\\\\\\\bf\implies AD=\dfrac{\not18}{10}\times\dfrac{4}{\not3}\: cm\\\\\\\bf\implies AD=\dfrac{6\times4}{10\times1}\: cm\\\\\\\bf \implies AD=\dfrac{24}{10}\: cm

\\\\\bf\implies AD=2.4\: cm

Hence,

The measure of AD is 2.4 cm.

Similar questions