Math, asked by khushishekhar23298, 1 year ago

Class 10th maths . question no. 18 please.

Attachments:

MOSFET01: Question have error
khushishekhar23298: nope. I got the answer
MOSFET01: cos theta + sin theta = √2 cos theta

Answers

Answered by MOSFET01
23

\bold{\large{\underline{\underline{ Step - by - step \:Solution\: \colon}}}}




------------------------------------------------------------------------------------------------------------------




\bold{\large{Given \: \colon \: cos \: \theta \: - \: sin\: \theta = \sqrt{2} sin\: \theta }}




 \bold{\large{To \: Prove\: \colon \: cos \: \theta \: + \: sin\: \theta \: = \: \sqrt{2} cos\: \theta }}




------------------------------------------------------------------------------------------------------------------




\bold{\large{\underline{Solution\: \colon}}}




Squaring both sides :




\bold{\large{ (cos \: \theta - sin\: \theta)^{2} = (\sqrt{2} \: sin\: \theta)^{2} }}




\bold{\large{ cos^{2} \: \theta + sin^{2} \: \theta - 2 sin\: \theta cos\: \theta = 2 sin^{2} \: \theta }}




 \bold{\large{ cos^{2} \: \theta + sin^{2}\: \theta - 2 sin^{2}\: \theta = 2 sin\: \theta \: cos \: \theta }}




\bold{\large{cos^{2}\: \theta - sin^{2} \: \theta = 2 sin\: \theta\: cos \: \theta }}




\bold{\large{ (cos\: \theta + sin\: \theta)(cos\: \theta - sin\: \theta )= 2 sin\: \theta \: cos \: \theta }}




.......{eqt 1}




------------------------------------------------------------------------------------------------------------------




\bold{\large{\therefore\: cos \:\theta - sin\: \theta = \sqrt{2}\: sin \theta}}




Put the given value in equation :




\bold{\large{ (\sqrt{2}sin\: \theta)(cos\: \theta + sin\: \theta) = 2 sin\: \theta \:cos \: \theta }}




\bold{\large{ cos\: \theta + sin \: \theta = \dfrac{2\:sin\: \theta \:cos \: \theta}{\sqrt{2} sin\: \theta}}}




\bold{\large{ cos \: \theta + sin\: \theta = \sqrt{2} cos \: \theta}}




------------------------------------------------------------------------------------------------------------------




As according to this solution becomes :




\bold{\large{Answer}}




\bold{\boxed{\large{ cos \: \theta + sin\: \theta = \sqrt{2} cos \: \theta}}}




------------------------------------------------------------------------------------------------------------------




Hence proved




[Assumption error in the question]




\bold{\large{Thanks}}


MOSFET01: :)
Mylo2145: nyc one!
Steph0303: Perfect :)
kiki9876: Incredible answer
MOSFET01: :)
aaravshrivastwa: Awesome
Anonymous: Amazing
MOSFET01: :) thanku so much
Anonymous: Nice
MOSFET01: :) thanks
Answered by TeenTitansGo
11
It seems that the given question is incorrect.


Correct question : Prove that cosA + sinA = √2 cosA



\mathsf{solution :}


cosA - sinA = √2 sinA

\dfrac{ \cos A - \sin A }{ \sin A} = \sqrt{2} \\ \\ \\ <br />\dfrac{ \cos A }{ \sin A} - \frac{<br />\sin A }{ \sin A } = \sqrt{2} \\ \\ \\ <br />\cot \: A \: - 1 = \sqrt{2} \\ \\ \cot \: A= \sqrt{2} + 1 \\ \\ \\ Therefore, \\ \\ \\ \dfrac{1}{ \cot A} = \frac{1}{ \sqrt{2} + 1 } \\ \\ \\ \frac{1}{\cot A} = \sqrt{ 2 }- 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{by \: rationalization} \\ \\ \\ \tan A = \sqrt{2} - 1 \\ \\ tanA + 1 = \sqrt{2}



Multiply by cosA on both sides,



(\dfrac{ \sin A }{ \cos A} \times \cos \: A) + (1 \times \cos A) = \sqrt{2} \cos A


sinA + cosA = √2 cosA



Proved.
Similar questions