Math, asked by varunaileni, 1 month ago

Class 11 jee question

Attachments:

Answers

Answered by LivetoLearn143
2

\large\underline{\sf{Solution-}}

 \sf \: \dfrac{loga}{b - c}  = \dfrac{logb}{c - a}  = \dfrac{logc}{a - b}

 \sf \: \dfrac{(b + c)loga}{(b + c)(b - c)}  = \dfrac{(c + a)logb}{(c - a)(c + a)}  = \dfrac{(a + b)logc}{(a + b)(a - b)}

 \sf \: \dfrac{log {a}^{b + c} }{ {b}^{2}  -  {c}^{2} }  = \dfrac{log {b}^{c + a} }{ {c}^{2}  -  {a}^{2} }    = \dfrac{log {c}^{a + b} }{ {a}^{2}  -  {b}^{2} }

 \sf \: \dfrac{log {a}^{b + c} }{ {b}^{2}  -  {c}^{2} }  = \dfrac{log {b}^{c + a} }{ {c}^{2}  -  {a}^{2} }    = \dfrac{log {c}^{a + b} }{ {a}^{2}  -  {b}^{2} } =  \dfrac{log {a}^{b + c} + log {b}^{c + a} + log {c}^{a + b} }{0}

[ By using Addendo]

 \sf \:  log {a}^{b + c} + log {b}^{c + a} + log {c}^{a + b}  = 0

 \sf \:  log {a}^{b + c} + log {b}^{c + a} + log {c}^{a + b}  = log1

 \sf \:  log ({a}^{b + c} {b}^{c + a}{c}^{a + b} )= log1

So,

 \sf \:  {a}^{b + c} {b}^{c + a}{c}^{a + b}= 1

Hence, Proved.

Similar questions