Math, asked by aftabahamad, 6 months ago

Class 11

limit
math
ncert questions

only right answer

Attachments:

Answers

Answered by prince5132
4

GIVEN :-

 \implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \:  \dfrac{x ^{2}  - 16}{ \sqrt{x ^{2 }  + 9}  - 5}

TO FIND :-

  \implies \: \displaystyle \bf \: value \: of \:  \:  \lim_{ x \: \to \: 4} \:  \dfrac{x ^{2}  - 16}{ \sqrt{x ^{2 }  + 9}  - 5}

SOLUTION :-

 \implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \:  \dfrac{x ^{2}  - 16}{ \sqrt{x ^{2 }  + 9}  - 5}

By RATIONALIZING the denominator,

  \implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \:  \dfrac{x ^{2}  - 16}{ \sqrt{x ^{2 }  + 9}  - 5}  \:  \:  \times   \frac{ \big( \sqrt{x ^{2}  + 9}   + 5 \big)} {  \big(\sqrt{x ^{2} + 9 } + 5 \big) }   \\  \\   \implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \:  \dfrac{ \big(x ^{2}  - 16 \big) \big( \sqrt{x ^{2} + 9 }  + 5 \big)}{ \big(x ^{2} + 9 - 25 \big) } \\  \\   \implies \: \displaystyle \bf \lim_{ x \: \to \: 4}  \:  \big(  \sqrt{x ^{2} + 9 }  + 5 \big) \\  \\   \implies \: \displaystyle \bf    \big( \sqrt{16 + 9}  + 5 \big) \\  \\   \implies \: \displaystyle \bf 5 + 5  \\  \\  \implies \boxed{ \red{ \bf \: 10}}

Hence the Answer is 10.

ADDITIONAL INFORMATION :-

\: \: \boxed{\begin{minipage}{4.5cm} $\rm \displaystyle \: \lim_{n \to 0}\ sin\ x=0\\ \\ \rm \lim_{n \to 0}\ cos\ x=1\\\\\rm \lim_{x\to 0}\dfrac{1-cos\ x}{x}=0\\\\\rm \lim_{x\to \infty}\bigg(1+\dfrac{1}{x}\bigg)^x=e\\ \\  \rm \lim_{x\to a}\dfrac{(x^n-a^n)}{x-a}=n(a)^{n-1} $\end{minipage}}

Answered by ItzBadCaptain
11

GIVEN :-</p><p></p><p>\implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \: \dfrac{x ^{2} - 16}{ \sqrt{x ^{2 } + 9} - 5}⟹x→4limx2+9−5x2−16</p><p></p><p>TO FIND :-</p><p></p><p>\implies \: \displaystyle \bf \: value \: of \: \: \lim_{ x \: \to \: 4} \: \dfrac{x ^{2} - 16}{ \sqrt{x ^{2 } + 9} - 5}⟹valueofx→4limx2+9−5x2−16</p><p></p><p>SOLUTION :-</p><p></p><p>\implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \: \dfrac{x ^{2} - 16}{ \sqrt{x ^{2 } + 9} - 5}⟹x→4limx2+9−5x2−16</p><p>By RATIONALIZING the denominator,</p><p>\begin{gathered} \implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \: \dfrac{x ^{2} - 16}{ \sqrt{x ^{2 } + 9} - 5} \: \: \times \frac{ \big( \sqrt{x ^{2} + 9} + 5 \big)} { \big(\sqrt{x ^{2} + 9 } + 5 \big) } \\ \\ \implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \: \dfrac{ \big(x ^{2} - 16 \big) \big( \sqrt{x ^{2} + 9 } + 5 \big)}{ \big(x ^{2} + 9 - 25 \big) } \\ \\ \implies \: \displaystyle \bf \lim_{ x \: \to \: 4} \: \big( \sqrt{x ^{2} + 9 } + 5 \big) \\ \\ \implies \: \displaystyle \bf \big( \sqrt{16 + 9} + 5 \big) \\ \\ \implies \: \displaystyle \bf 5 + 5 \\ \\ \implies \boxed{ \red{ \bf \: 10}}\end{gathered}⟹x→4limx2+9−5x2−16×(x2+9+5)(x2+9+5)⟹x→4lim(x2+9−25)(x2−16)(x2+9+5)⟹x→4lim(x2+9+5)⟹(16+9+5)⟹5+5⟹10</p><p>Hence the Answer is 10.</p><p></p><p>ADDITIONAL INFORMATION :-</p><p></p><p>

Similar questions