Math, asked by ishikakavuru, 3 months ago

class 11 limits how to solve this question?

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\bold{Solution :-  }}

\tt \:\lim_{x\to\ {0}^{ - } } \bigg(\dfrac{1}{1 +  {2}^{ \frac{1}{x} } }  \bigg)

\tt \:  ⟼Put \: x \:  = 0 - h \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \\ \tt \:  ⟼as \: x \: ⟼0\tt\implies \: \: h \: ⟼0

\tt \: = \lim_{h\to\ {0} } \bigg(\dfrac{1}{1 +  {2}^{ \frac{1}{0 - h} } }  \bigg)

\tt \: = \lim_{h\to\ {0} } \bigg(\dfrac{1}{1 +  {2}^{ \frac{1}{ - h} } }  \bigg)

\tt\ \: = \dfrac{1}{1 +  {2}^{ -  \infty \: } }

\tt \:   = \dfrac{1}{1 + 0}

\tt \:   = 1

Similar questions