Math, asked by riddschauhan06, 1 month ago

class 11 maths maths maths ​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: | {3}^{x} + 1 | +  | {3}^{x}  - 1| = 18

We know,

\rm :\longmapsto\: {3}^{x} > 0 \:  \forall \: x \in \: real \: number

\bf\implies \: {3}^{x}  + 1> 1

\bf\implies \:  | {3}^{x}  + 1|  = {3}^{x}  + 1

So, given equation can be rewritten as

\rm :\longmapsto\: {3}^{x} + 1 +  | {3}^{x}  - 1| = 18

\rm :\longmapsto\: {3}^{x} +  | {3}^{x}  - 1| = 18 - 1

\rm :\longmapsto\: {3}^{x} +  | {3}^{x}  - 1| = 17

Now, we find the breaking point.

\rm :\longmapsto\: {3}^{x} - 1 = 0

\rm :\longmapsto\: {3}^{x}  = 1

\bf\implies \:x = 0

Thus,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: | {3}^{x} - 1 |  = \begin{cases} &\sf{ - ( {3}^{x}  - 1) \:  \: when \: x < 0} \\ &\sf{  \:  \:  \:  \: {3}^{x} - 1 \:  \: when \: x \:  \geqslant 0 } \end{cases}\end{gathered}\end{gathered}

Case :- 1

\bf :\longmapsto\:When \: x < 0

So, given equation

\rm :\longmapsto\: {3}^{x} +  | {3}^{x}  - 1| = 17

reduces to

\rm :\longmapsto\: {3}^{x} - ( {3}^{x}  - 1) = 17

\rm :\longmapsto\: {3}^{x} - {3}^{x}  + 1 = 17

\rm :\longmapsto\:1 = 17

\bf\implies \:There \: is \: no \: solution \: in \: this \: case

Case :- 2

\bf :\longmapsto\:When \: x  \geqslant  0

The equation

\rm :\longmapsto\: {3}^{x} +  | {3}^{x}  - 1| = 17

reduces to

\rm :\longmapsto\: {3}^{x} +  {3}^{x}  - 1 = 17

\rm :\longmapsto\: 2.{3}^{x}  = 17 + 1

\rm :\longmapsto\: 2.{3}^{x}  = 18

\rm :\longmapsto\: {3}^{x}  = 9

\rm :\longmapsto\: {3}^{x}  =  {3}^{2}

\bf\implies \:x = 2

So,

Number of roots of the equation

\bf :\longmapsto\: | {3}^{x} + 1 | +  | {3}^{x}  - 1| = 18 \: is \:   \:  \: \red{1}

Answered by Axelenplays101
2

Answer:

Number of roots of the equation is 18

Step-by-step explanation:

Similar questions