Physics, asked by Anonymous, 1 year ago

Class 11-Physics


Evaluate (126)^2/3.​

Answers

Answered by waqarsd
35

 {126}^{ \frac{2}{3} }  \\  \\ (126 \times 126)^{ \frac{1}{3} }  \\  \\ (7 \times 2 \times  {3}^{2}  \times 7 \times 2 \times  {3}^{2} )^{ \frac{1}{3} }  \\  \\ ( {3}^{4}  {2}^{2}  7^{2} )^{ \frac{1}{3} }  \\  \\ 3({2}^{2}  {7}^{2} 3) ^{ \frac{1}{3} }  \\  \\ let \:  \: ({2}^{2}  {7}^{2} 3) ^{ \frac{1}{3} } = x \\  \\ taking \:   log_{10} \:  \: on \: both \: sides \\  \\  \frac{2}{3}  log_{10}2 +  \frac{2}{3}  log_{10}7 +  \frac{1}{3}  log_{10}(3)  =  log_{10}x \\  \\  \frac{2}{3} (0.3010) +  \frac{2}{3} (0.8450) +  \frac{1}{3} (0.4771) =  log_{10}x \\  \\  \frac{2.7691}{3}  =  log_{10}x \\  \\ x =  {10}^{ \frac{2.7691}{3} }  \\  \\  x = 8.376 \\  \\ now \\  \\  {126}^{ \frac{2}{3} } . = .  > \: 3x \\  \\  {126}^{ \frac{2}{3} } . = . >  \: 25.128 \\  \\  \\ . >  \: refers \: to \: approximation \\  \\  \\ for \: log \: and \: antilog \: values \: refer \:log \: table

hope it helps


Anonymous: thanks
Similar questions