Math, asked by 44PurpleOcean, 19 days ago

Class 11

Q1 Find the values of other five trigonometric functions

1. cos x = -1/2, x lies in third quadrant.

Q2 Prove that

 \cos ^{2} x +  \cos ^{2} (x +  \frac{\pi}{3} ) +  \cos ^{2} (x -  \frac{\pi}{3} ) =  \frac{3}{2}

❌ Kindly don't spam/copy ❌

Answers

Answered by mathdude500
55

\large\underline{\sf{Solution-}}

Given that,

x lies in third quadrant.

\rm \: cosx =  - \dfrac{1}{2}

We know,

\rm \:  {sin}^{2}x +  {cos}^{2}x = 1

On substituting the value of cosx, we get

\rm \:  {sin}^{2}x +   {\bigg[ - \dfrac{1}{2} \bigg]}^{2}  = 1

\rm \:  {sin}^{2}x +    \dfrac{1}{4} = 1

\rm \:  {sin}^{2}x  = 1 -  \dfrac{1}{4}

\rm \:  {sin}^{2}x  =  \dfrac{3}{4}

\rm \:  {sin}x  =   \pm \: \dfrac{ \sqrt{3} }{2}

As x lies in third quadrant, so sinx < 0

\rm\implies \:\rm \:  {sin}x  \:  = \:     -  \: \dfrac{ \sqrt{3} }{2}

Now, Other 5 Trigonometric ratios are

\rm \: sinx =  - \dfrac{ \sqrt{3} }{2}

\rm \: cosx =  - \dfrac{1}{2}

\rm \: tanx = \dfrac{sinx}{cosx}  = \sqrt{3}

\rm \: cosecx =  -  \dfrac{2}{ \sqrt{3} }

\rm \: secx =  - 2

\rm \: cotx \:  =  \:  \dfrac{1}{ \sqrt{3} }

\large\underline{\sf{Solution-2}}

\rm \: \cos ^{2} x + \cos ^{2}\bigg (x + \dfrac{\pi}{3} \bigg) + \cos ^{2} \bigg(x - \dfrac{\pi}{3} \bigg)

can be rewritten as

\rm \:  =  \: \dfrac{1}{2}\bigg[2 \cos ^{2} x + 2\cos ^{2}\bigg (x + \dfrac{\pi}{3} \bigg) + 2\cos ^{2} \bigg(x - \dfrac{\pi}{3} \bigg)\bigg]

We know

\boxed{\tt{  \:  {2cos}^{2}x = 1 + cos2x \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\bigg[1 + \cos2x + 1 +\cos\bigg (2x + \dfrac{2\pi}{3} \bigg) + 1 + \cos \bigg(2x - \dfrac{2\pi}{3} \bigg)\bigg]

\rm \:  =  \: \dfrac{1}{2}\bigg[3 + \cos2x +\cos\bigg (2x + \dfrac{2\pi}{3} \bigg) + \cos \bigg(2x - \dfrac{2\pi}{3} \bigg)\bigg]

We know,

\boxed{\tt{  \: cos(x + y) + cos(x - y) = 2 \: cosx \: cosy \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\bigg[3 + \cos2x +2 \: \cos2x \: cos\dfrac{2\pi}{3} \bigg]

\rm \:  =  \: \dfrac{1}{2}\bigg[3 + \cos2x +2 \: \cos2x \: cos\bigg(\pi - \dfrac{\pi}{3}\bigg)\bigg]

We know,

\boxed{\tt{  \:  \: cos(\pi - x) \:  =  \:  -  \: cosx \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2}\bigg[3 + \cos2x  - 2 \: \cos2x \: cos\bigg(\dfrac{\pi}{3}\bigg)\bigg]

\rm \:  =  \: \dfrac{1}{2}\bigg[3 + \cos2x  - 2 \: \cos2x \:  \times \dfrac{1}{2}\bigg]

\rm \:  =  \: \dfrac{1}{2}\bigg[3 + \cos2x  -  \: \cos2x \:\bigg]

\rm \:  =  \: \dfrac{3}{2}

Hence,

\boxed{\tt{ \rm \: \cos ^{2} x + \cos ^{2}\bigg (x + \dfrac{\pi}{3} \bigg) + \cos ^{2} \bigg(x - \dfrac{\pi}{3} \bigg) =  \frac{3}{2} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \: sin2x = 2sinxcosx =  \frac{2 \: tanx}{1 +  {tan}^{2} x} \: }} \\

\boxed{\tt{  \: cos2x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1 \: }} \\

\boxed{\tt{  \: cos2x =  {cos}^{2}x  -  {sin}^{2}x =   \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x}  \: }} \\

\boxed{\tt{  \: tan2x  =   \frac{2tanx}{1 -   {tan}^{2} x}  \: }} \\

\boxed{\tt{ sin3x = 3sinx \:  -  \:  {4sin}^{3}x \: }} \\

\boxed{\tt{ cos3x = \:  {4cos}^{3}x \: -  \: 3cosx }} \\

\boxed{\tt{  \: tan3x =  \frac{3tanx -  {tan}^{3} x}{1 - 3 {tan}^{2}x } \: }} \\

Answered by jaswasri2006
31

Refer the Given Attachments.

Attachments:
Similar questions