Math, asked by Anonymous, 20 days ago

Class -11

Quadratic Formula

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\rm \:  \alpha , \beta  ,\gamma  \:  \in \: R \\

such that,

\rm \: a { \alpha }^{2} + b \alpha  + c = (sin\theta ) { \alpha }^{2}  + (cos\theta ) \alpha  -  -  - (1) \\

\rm \: a {  \beta  }^{2} + b  \beta   + c = (sin\theta ) {  \beta  }^{2}  + (cos\theta )  \beta   -  -  - (2) \\

\rm \: a {  \gamma  }^{2} + b  \gamma    + c = (sin\theta ) {   \gamma   }^{2}  + (cos\theta )   \gamma  -  -  - (3) \\

From these 3 equations, we concluded that

\rm \:  \alpha,  \beta , \gamma  \: are \: the \: roots \: of \: the \: equation \: \:

\rm \:  {ax}^{2} + bx + x =  {(sin\theta )}x^{2} + x(cos\theta ) \\

can be rewritten as

\rm \:  {ax}^{2} + bx + x -   {(sin\theta )x}^{2}  -  x(cos\theta ) = 0 \\

\rm \: (a - sin\theta ) {x}^{2} + (bcos\theta )x + c = 0 \\

Since, its a quadratic equation in x and having 3 roots.

So, its an identity and its possible only, when

\rm \:a - sin\theta  = 0, \:  \: b - cos\theta =  0, \:  \: c = 0 \\

\rm\implies \:a = sin\theta

\rm\implies \:b = cos\theta

\rm\implies \:c = 0

Now, Consider

\rm \: \dfrac{ {a}^{2}  +  {b}^{2} }{ {a}^{2}  + 3ab +  {5b}^{2} }  \\

So, on substituting the values of a and b, we get

\rm \: =  \: \dfrac{ {sin}^{2}\theta   +  {cos}^{2}\theta  }{ {sin}^{2}\theta   + 3sin\theta  \: cos\theta  +  {5cos}^{2}\theta  }  \\

\rm \: =  \: \dfrac{1}{ {sin}^{2}\theta   + 3sin\theta  \: cos\theta  +  {5cos}^{2}\theta  }  \\

can be further rewritten as

\rm \: =  \: \dfrac{2}{ 2{sin}^{2}\theta   + 3(2sin\theta \: cos\theta)  +  {5(2cos}^{2}\theta)}  \\

\rm \: =  \: \dfrac{2}{1 - cos2\theta  + 3sin2\theta  + 5(1 + cos2\theta )}  \\

\rm \: =  \: \dfrac{2}{1 - cos2\theta  + 3sin2\theta  + 5 + 5cos2\theta }  \\

\rm \: =  \: \dfrac{2}{6   + 3sin2\theta   + 4cos2\theta }  \\

So,

\rm\implies \: \: \dfrac{2}{6   + 3sin2\theta   + 4cos2\theta }  \: is \: maximum \: when \\

\rm \: 6 + 3sin2\theta  + 4cos2\theta  \: is \: minimum. \\

We know,

\rm \: asinx + bcosx + c \:  \in \: [c -  \sqrt{ {a}^{2}  +  {b}^{2} }, \: c +  \sqrt{ {a}^{2}  +  {b}^{2} }] \\

So, it implies,

\rm \: 6 + 3sin2\theta  + 4cos2\theta  \in \: [6 -  \sqrt{ {3}^{2}  +  {4}^{2} }, \: 6 +  \sqrt{ {3}^{2}  +  {4}^{2} }]  \\

\rm \: 6 + 3sin2\theta  + 4cos2\theta  \in \: [6 -  \sqrt{ 9 + 16 }, \: 6 +  \sqrt{ 9 + 16}]  \\

\rm \: 6 + 3sin2\theta  + 4cos2\theta  \in \: [6 -  5, \: 6 +  5]  \\

\rm \: 6 + 3sin2\theta  + 4cos2\theta  \in \: [1, \: 11]  \\

\rm\implies \:Minimum \: value \: of \: 6 + 3sin2\theta  + 4cos2\theta  \: is \: 1 \\

Thus,

\rm\implies \:Maximum \: value \: of \:  \dfrac{2}{6   + 3sin2\theta   + 4cos2\theta }  \: is \: 2 \\

Hence,

\rm \: \rm\implies \:Maximum \: value \: of \: \dfrac{ {a}^{2}  +  {b}^{2} }{ {a}^{2}  + 3ab +  {5b}^{2} } \: is \: 2  \\

\large\underline{\sf{Solution-b}}

Given that,

\rm \: \vec{V_1} = a\hat{i} + b\hat{j} + c\hat{k} \\

On substituting the values of a, b, c, we get

\rm \: \vec{V_1} = sin\theta \hat{i} + cos\theta \hat{j} + 0\hat{k} \\

Now, Also given that,

\rm \: \vec{V_2} = \hat{i} + \hat{j} +  \sqrt{2} \hat{k} \\

Now, we know angle between two vectors is given by

\rm \: cosx = \dfrac{\vec{V_1}.\vec{V_2}}{ |\vec{V_1}|   \:  |\vec{V_2}| }  \\

So, on substituting the values, we get

\rm \: cos\dfrac{\pi}{3}  = \dfrac{sin\theta  + cos\theta  + 0}{ \sqrt{ {sin}^{2}\theta  +  {cos}^{2}\theta }  \times  \sqrt{1 + 1 + 2} }  \\

\rm \: \dfrac{1}{2}  = \dfrac{sin\theta  + cos\theta }{2}

\rm \: sin\theta  + cos\theta  = 1 \\

On squaring both sides, we get

\rm \:  {sin}^{2} \theta  +  {cos}^{2} \theta  + 2sin\theta  \: cos\theta  \:  =  \: 1 \\

\rm \: 1+ 2sin\theta  \: cos\theta  \:  =  \: 1 \\

\rm \: sin2\theta   \:  =  \: 0 \\

\rm\implies \:2\theta  = 0,\pi,2\pi,3\pi,4\pi

\rm\implies \:\theta  = 0, \dfrac{\pi}{2} ,\pi, \dfrac{3\pi}{2},2\pi \\

As,

\rm \:\theta  = \pi, \dfrac{3\pi}{2} \: donot \: satisfy \: sin\theta  + cos\theta  = 1 \\

So,

\rm\implies \:\theta  = 0,  \: \dfrac{\pi}{2} , \: 2\pi  \:  \in \: [0,2\pi]\\

Similar questions